共查询到2条相似文献,搜索用时 0 毫秒
1.
Ruoppolo M Orrù S Talamo F Ljung J Pirneskoski A Kivirikko KI Marino G Koivunen P 《Protein science : a publication of the Protein Society》2003,12(5):939-952
Protein disulfide isomerase (PDI, EC 5.3.4.1), an enzyme and chaperone, catalyses disulfide bond formation and rearrangements in protein folding. It is also a subunit in two proteins, the enzyme collagen prolyl 4-hydroxylase and the microsomal triglyceride transfer protein. It consists of two catalytically active domains, a and a', and two inactive ones, b and b', all four domains having the thioredoxin fold. Domain b' contains the primary peptide binding site, but a' is also critical for several of the major PDI functions. Mass spectrometry was used here to follow the folding pathway of bovine pancreatic ribonuclease A (RNase A) in the presence of three PDI mutants, F449R, Delta455-457, and abb', and the individual domains a and a'. The first two mutants contained alterations in the last alpha helix of domain a', while the third lacked the entire domain a'. All mutants produced genuine, correctly folded RNase A, but the appearance rate of 50% of the product, as compared to wild-type PDI, was reduced 2.5-fold in the case of PDI Delta455-457, 7.5-fold to eightfold in the cases of PDI F449R and PDI abb', and over 15-fold in the cases of the individual domains a and a'. In addition, PDI F449R and PDI abb' affected the distribution of folding intermediates. Domains a and a' catalyzed the early steps in the folding but no disulfide rearrangements, and therefore the rate observed in the presence of these individual domains was similar to that of the spontaneous process. 相似文献
2.
Manuel Rico Jorge Santoro Carlos González Marta Bruix José Luis Neira José Luis Nieto José Herranz 《Journal of biomolecular NMR》1991,1(3):283-298
Summary A method is proposed to generate initial structures in cases where the distance geometry method may fail, such as when the set of1H NMR NOE-based distance constraints is small in relation to the size of the protein. The method introduces an initial correlation between the and backbone angles (based on empirical observations) which is relaxed in later stages of the calculation. The obtained initial structures are refined by well-established methods of energy minimization and restrained molecular dynamics. The method is applied to determine the solution structure of Ribonuclease A (124 residues) from a NOE basis consisting of 467 NOE cross-correlations (97 intra-residue, 206 sequential, 23 medium-range and 141 long-range) obtained at 360 MHz. The global shape and backbone overall fold of the eight final refined structures are close to those shown by the crystal structure. A meaningful difference in the positioning of the catalytically important His119 side chain in the solution and crystal structures has been detected. 相似文献