首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AmphL is a cytochrome P450 enzyme that catalyzes the C8 oxidation of 8-deoxyamphotericin B to the polyene macrolide antibiotic, amphotericin B. To understand this substrate selectivity, we solved the crystal structure of AmphL to a resolution of 2.0 Å in complex with amphotericin B and performed molecular dynamics (MD) simulations. A detailed comparison with the closely related P450, PimD, which catalyzes the epoxidation of 4,5-desepoxypimaricin to the macrolide antibiotic, pimaricin, reveals key catalytic structural features responsible for stereo- and regio-selective oxidation. Both P450s have a similar access channel that runs parallel to the active site I helix over the surface of the heme. Molecular dynamics simulations of substrate binding reveal PimD can “pull” substrates further into the P450 access channel owing to additional electrostatic interactions between the protein and the carboxyl group attached to the hemiketal ring of 4,5-desepoxypimaricin. This substrate interaction is absent in AmphL although the additional substrate -OH groups in 8-deoxyamphotericin B help to correctly position the substrate for C8 oxidation. Simulations of the oxy-complex indicates that these -OH groups may also participate in a proton relay network required for O2 activation as has been suggested for two other macrolide P450s, PimD and P450eryF. These findings provide experimentally testable models that can potentially contribute to a new generation of novel macrolide antibiotics with enhanced antifungal and/or antiprotozoal efficacy.  相似文献   

2.
Selected active site residues in substrate recognition sites (SRS) 1 and 5 of cytochrome P450 2C8 (CYP2C8) were mutated to the corresponding amino acids present in CYP2C9 to investigate the contribution of these positions to the unique substrate selectivity and regioselectivity of CYP2C8. The effects of mutations, singly and in combination, were assessed from changes in the kinetics of paclitaxel 6alpha-hydroxylation, a CYP2C8-specific pathway, and the tolylmethyl and ring hydroxylations of torsemide, a mixed CYP2C9/CYP2C8 substrate. Within SRS1, the single mutation S114F abolished paclitaxel 6alpha-hydroxylation, while the I113V substitution resulted in modest parallel reductions in K(m) and V(max). Mutations in SRS5 (viz., V362L, G365S, and V366L) reduced paclitaxel intrinsic clearance (V(max)/K(m)) by 88-100%. Torsemide is preferentially metabolized by CYP2C9, and it was anticipated that the mutations in CYP2C8 might increase activity. However, methyl and ring hydroxylation intrinsic clearances were either unchanged or decreased by the mutations, although hydroxylation regioselectivity was often altered relative to wild-type CYP2C8. The mutations significantly increased (28-968%) K(m) values for both torsemide methyl and ring hydroxylation but had variable effects on V(max). The effects of the combined mutations in SRS1, SRS5, and SRS1 plus SRS5 were generally consistent with the changes produced by the separate mutations. Mutation of CYP2C8 at position 359 (S359I), a site of genetic polymorphism in CYP2C9, resulted in relatively minor changes in paclitaxel- and torsemide-hydroxylase activities. The results are consistent with multiple substrate binding orientations within the CYP2C8 active site and a differential contribution of active site residues to paclitaxel and torsemide binding and turnover.  相似文献   

3.
Recent events have created an urgent need for new therapeutic strategies to treat anthrax. We have applied a mixture-based peptide library approach to rapidly determine the optimal peptide substrate for the anthrax lethal factor (LF), a metalloproteinase with an important role in the pathogenesis of the disease. Using this approach we have identified peptide analogs that inhibit the enzyme in vitro and that protect cultured macrophages from LF-mediated cytolysis. The crystal structures of LF bound to an optimized peptide substrate and to peptide-based inhibitors provide a rationale for the observed selectivity and may be exploited in the design of future generations of LF inhibitors.  相似文献   

4.
Streptomyces venezuelae synthesizes chloramphenicol (Cm), an inhibitor of ribosomal peptidyl transferase activity, thereby inhibiting bacterial growth. The producer escapes autoinhibition by its own secondary metabolite through phosphorylation of Cm by chloramphenicol phosphotransferase (CPT). In addition to active site binding, CPT binds its product 3-phosphoryl-Cm, in an alternate product binding site. To address the mechanisms of Cm tolerance of the producer, the crystal structures of CPT were determined in complex with either the nonchlorinated Cm (2-N-Ac-Cm) at 3.1 A resolution or the antibiotic's immediate precursor, the p-amino analog p-NH(2)-Cm, at 2.9 A resolution. Surprisingly, p-NH(2)-Cm binds CPT in a novel fashion. Additionally, neither 2-N-Ac-Cm nor p-NH(2)-Cm binds to the secondary product binding site.  相似文献   

5.
Octopine dehydrogenase [N2-(d-1-carboxyethyl)-l-arginine:NAD+ oxidoreductase] (OcDH) from the adductor muscle of the great scallop Pecten maximus catalyzes the reductive condensation of l-arginine and pyruvate to octopine during escape swimming. This enzyme, which is a prototype of opine dehydrogenases (OpDHs), oxidizes glycolytically born NADH to NAD+, thus sustaining anaerobic ATP provision during short periods of strenuous muscular activity. In contrast to some other OpDHs, OcDH uses only l-arginine as the amino acid substrate. Here, we report the crystal structures of OcDH in complex with NADH and the binary complexes NADH/l-arginine and NADH/pyruvate, providing detailed information about the principles of substrate recognition, ligand binding and the reaction mechanism. OcDH binds its substrates through a combination of electrostatic forces and size selection, which guarantees that OcDH catalysis proceeds with substrate selectivity and stereoselectivity, giving rise to a second chiral center and exploiting a “molecular ruler” mechanism.  相似文献   

6.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

7.
Streptomyces venezuelae P10 could produce extracellular chitinase in a medium containing 0.6% colloidal chitin that was fermented for 96 hours at 30°C. The enzyme was purified to apparent homogeneity with 80% saturation of ammonium sulfate as shown by chitin affinity chromatography and DEAE-cellulose anion-exchange chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) of the enzyme showed a molecular weight of 66 kDa. The chitinase was characterized, and antifungal activity was observed against phytopathogens. Also, the first 15 N-terminal amino-acid residues of the chitinase were determined. The chitin hydrolysed products were N-acetylglucosamine and N, N-diacetylchitobiose.  相似文献   

8.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献   

9.
Understanding the detailed metabolic mechanisms of membrane-associated cytochromes P450 is often hampered by heterogeneity, ill-defined oligomeric state of the enzyme, and variation in the stoichiometry of the functional P450.reductase complexes in various reconstituted systems. Here, we describe the detailed characterization of a functionally homogeneous 1:1 complex of cytochrome P450 3A4 (CYP3A4) and cytochrome P450 reductase solubilized via self-assembly in a nanoscale phospholipid bilayer. CYP3A4 in this complex showed a nearly complete conversion from the low- to high-spin state when saturated with testosterone (TS) and no noticeable modulation due to the presence of cytochrome P450 reductase. Global analysis of equilibrium substrate binding and steady-state NADPH consumption kinetics provided precise resolution of the fractional contributions to turnover of CYP3A4 intermediates with one, two, or three TS molecules bound. The first binding event accelerates NADPH consumption but does not result in significant product formation due to essentially complete uncoupling. Binding of the second substrate molecule is critically important for catalysis, as the product formation rate reaches a maximum value with two TS molecules bound, whereas the third binding event significantly improves the coupling efficiency of redox equivalent usage with no further increase in product formation rate. The resolution of the fractional contributions of binding intermediates of CYP3A4 into experimentally observed overall spin shift and the rates of steady-state NADPH oxidation and product formation provide new detailed insight into the mechanisms of cooperativity and allosteric regulation in this human cytochrome P450.  相似文献   

10.
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to d-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and d-camphor are C(10) monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 A resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe(2)S(2) redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.  相似文献   

11.
Identifying key structural features of cytochromes P450 is critical in understanding the catalytic mechanism of these important drug-metabolizing enzymes. Cytochrome P450BM-3 (BM-3), a structural and mechanistic P450 model, catalyzes the regio- and stereoselective hydroxylation of fatty acids. Recent work has demonstrated the importance of water in the mechanism of BM-3, and site-specific mutagenesis has helped to elucidate mechanisms of substrate recognition, binding, and product formation. One of the amino acids identified as playing a key role in the active site of BM-3 is alanine 328, which is located in the loop between the K helix and β 1-4. In the A328V BM-3 mutant, substrate affinity increases 5-10-fold and the turnover number increases 2-8-fold compared to wild-type enzyme. Unlike wild-type enzyme, this mutant is purified from E. coli with endogenous substrate bound due to the higher binding affinity. Close examination of the crystal structures of the substrate-bound native and A328V mutant BMPs indicates that the positioning of the substrate is essentially identical in the two forms of the enzyme, with the two valine methyl groups occupying voids present in the active site of the wild-type substrate-bound structure.  相似文献   

12.
Zou Y  Li C  Brunzelle JS  Nair SK 《Biochemistry》2007,46(14):4294-4304
Diversity in the polysaccharide component of lipopolysaccharide (LPS) contributes to the persistence and pathogenesis of Gram-negative bacteria. The Nudix hydrolase GDP-mannose mannosyl hydrolase (Gmm) contributes to this diversity by regulating the concentration of mannose in LPS biosynthetic pathways. Here, we present seven high-resolution crystal structures of Gmm from the enteropathogenic E. coli strain O128: the structure of the apo enzyme, the cocrystal structure of Gmm bound to the product Mg2+-GDP, two cocrystal structures of precatalytic and turnover complexes of Gmm-Ca2+-GDP-alpha-d-mannose, and three cocrystal structures of an inactive mutant (His-124 --> Leu) Gmm bound to substrates GDP-alpha-d-mannose, GDP-alpha-d-glucose, and GDP-beta-l-fucose. These crystal structures help explain the molecular basis for substrate specificity and promiscuity and provide a structural framework for reconciling previously determined kinetic parameters. Unexpectedly, these structures reveal concerted changes in the enzyme structure that result in the formation of a catalytically competent active site only in the presence of the substrate/product. These structural views of the enzyme may provide a rationale for the design of inhibitors that target the biosynthesis of LPS by pathogenic bacteria.  相似文献   

13.
Various antibiotics bind to ribosomes at functionally relevant locations such as the peptidyl-transferase center (PTC) and the exit tunnel for nascent proteins. High-resolution structures of antibiotics bound to ribosomal particles from a eubacterium that is similar to pathogens and an archaeon that shares properties with eukaryotes are deciphering subtle differences in these highly conserved locations that lead to drug selectivity and thereby facilitate clinical usage. These structures also show that members of antibiotic families with structural differences might bind to specific ribosomal pockets in different modes dominated by their chemical properties. Similarly, the chemical properties of drugs might govern variations in the nature of seemingly identical mechanisms of drug resistance. The observed variability in binding modes justifies expectations for structural design of improved antibiotic properties.  相似文献   

14.
Human cytochrome P450 3A4 (CYP3A4) metabolizes a significant portion of clinically relevant drugs and often exhibits complex steady-state kinetics that can involve homotropic and heterotropic cooperativity between bound ligands. In previous studies, the hydroxylation of the sedative midazolam (MDZ) exhibited homotropic cooperativity via a decrease in the ratio of 1'-OH-MDZ to 4-OH-MDZ at higher drug concentrations. In this study, MDZ exhibited heterotropic cooperativity with the antiepileptic drug carbamazepine (CBZ) with characteristic decreases in the 1'-OH-MDZ to 4-OH-MDZ ratios. To unravel the structural basis of MDZ cooperativity, we probed MDZ and CBZ bound to CYP3A4 using longitudinal T(1) nuclear magnetic resonance (NMR) relaxation and molecular docking with AutoDock 4.2. The distances calculated from longitudinal T(1) NMR relaxation were used during simulated annealing to constrain the molecules to the substrate-free X-ray crystal structure of CYP3A4. These simulations revealed that either two MDZ molecules or an MDZ molecule and a CBZ molecule assume a stacked configuration within the CYP3A4 active site. In either case, the proton at position 4 of the MDZ molecule was closer to the heme than the protons of the 1'-CH(3) group. In contrast, molecular docking of a single molecule of MDZ revealed that the molecule was preferentially oriented with the 1'-CH(3) position closer to the heme than position 4. This study provides the first detailed molecular analysis of heterotropic and homotropic cooperativity of a human cytochrome P450 from an NMR-based model. Cooperativity of ligand binding through direct interaction between stacked molecules may represent a common motif for homotropic and heterotropic cooperativity.  相似文献   

15.
Yue QK  Kass IJ  Sampson NS  Vrielink A 《Biochemistry》1999,38(14):4277-4286
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols.  相似文献   

16.
Bacillus subtilis yumC encodes a novel type of ferredoxin‐NADP+ oxidoreductase (FNR) with a primary sequence and oligomeric conformation distinct from those of previously known FNRs. In this study, the crystal structure of B. subtilis FNR (BsFNR) complexed with NADP+ has been determined. BsFNR features two distinct binding domains for FAD and NADPH in accordance with its structural similarity to Escherichia coli NADPH‐thioredoxin reductase (TdR) and TdR‐like protein from Thermus thermophilus HB8 (PDB code: 2ZBW). The deduced mode of NADP+ binding to the BsFNR molecule is nonproductive in that the nicotinamide and isoalloxazine rings are over 15 Å apart. A unique C‐terminal extension, not found in E. coli TdR but in TdR‐like protein from T. thermophilus HB8, covers the re‐face of the isoalloxazine moiety of FAD. In particular, Tyr50 in the FAD‐binding region and His324 in the C‐terminal extension stack on the si‐ and re‐faces of the isoalloxazine ring of FAD, respectively. Aromatic residues corresponding to Tyr50 and His324 are also found in the plastid‐type FNR superfamily of enzymes, and the residue corresponding to His324 has been reported to be responsible for nucleotide specificity. In contrast to the plastid‐type FNRs, replacement of His324 with Phe or Ser had little effect on the specificity or reactivity of BsFNR with NAD(P)H, whereas replacement of Arg190, which interacts with the 2′‐phosphate of NADP+, drastically decreased its affinity toward NADPH. This implies that BsFNR adopts the same nucleotide binding mode as the TdR enzyme family and that aromatic residue on the re‐face of FAD is hardly relevant to the nucleotide selectivity.  相似文献   

17.
The determinants of the regio- and stereoselective oxidation of fatty acids by cytochrome P450 BM-3 were examined by mutagenesis of residues postulated to anchor the fatty acid or to determine its active site substrate-accessible volume. R47, Y51, and F87 were targeted separately and in combination in order to assess their contributions to arachidonic, palmitoleic, and lauric acid binding affinities, catalytic rates, and regio- and stereoselective oxidation. For all three fatty acids, mutation of the anchoring residues decreased substrate binding affinity and catalytic rates and, for lauric acid, caused a significant increase in the enzyme's NADPH oxidase activity. These changes in catalytic efficiency were accompanied by decreases in the regioselectivity of oxygen insertion, suggesting an increased freedom of substrate movement within the active site of the mutant proteins. The formation of significant amounts of 19-hydroxy AA by the Y51A mutant and of 11,12-EET by the R47A/Y51A/F87V triple mutant, suggest that wild-type BM-3 shields these carbon atoms from the heme bound reactive oxygen by restricting the freedom of AA displacement along the substrate channel, and active site accessibility. These results indicate that binding affinity and catalytic turnover are fatty acid carbon-chain length dependent, and that the catalytic efficiency and the regioselectivity of fatty acid metabolism by BM-3 are determined by active site binding coordinates that control acceptor carbon orientation and proximity to the heme iron.  相似文献   

18.
The kainoids are a class of excitatory and excitotoxic pyrrolidine dicarboxylates that act at ionotropic glutamate receptors. The kainoids bind kainate receptors with high affinity and, while binding affinity is lower at AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, they are active in functional assays at this receptor subtype as well. However, kainoids are only partial agonists at AMPA receptors. Currents evoked by kainoids have been described as either slowly desensitizing, partially desensitizing, or non-desensitizing. Recently acquired X-ray crystal structures of the ligand binding domain of the iGluR2, AMPA sensitive receptor suggest that differences in ligand-receptor interactions may influence functional properties of an agonist. In an effort to identify important ligand-receptor interactions of various kainoids, we have conducted a series of low-mode docking searches of AMPA agonists in the iGluR2 binding domain. Kainic acid exhibited alternate low-lying geometries, with loss of hydrogen bonds to domain 2, which may represent a dissociation route not available to other kainoids. The most potent of the kainoids are capable of forming hydrogen bonding interactions that span the two domains of the receptor. In particular, a hydrogen bond between the domoic acid C6' carboxylic acid and Ser652 may prevent a peptide bond rotation that is associated with the desensitized state of the receptor.  相似文献   

19.
The lipase from Malassezia globosa (SMG1) was identified to be strictly specific for mono- and diacylglycerol but not triacylglycerol. The crystal structures of SMG1 were solved in the closed conformation, but they failed to provide direct evidence of factors responsible for this unique selectivity. To address this problem, we constructed a structure in the open, active conformation and modeled a diacylglycerol analogue into the active site. Molecular dynamics simulations were performed on this enzyme-analogue complex to relax steric clashes. This bound diacylglycerol analogue unambiguously identified the position of two pockets which accommodated two alkyl chains of substrate. The structure of SMG1-analogue complex revealed that Leu103 and Phe278 divided the catalytic pocket into two separated moieties, an exposed groove and a narrow tunnel. Analysis of the binding model suggested that the unique selectivity of this lipase mainly resulted from the shape and size of this narrow tunnel, in which there was no space for the settlement of the third chain of triacylglycerol. These results expand our understanding on the mechanism underlying substrate selectivity of enzyme, and could pave the way for site-directed mutagenesis experiments to improve the enzyme for application.  相似文献   

20.
S-Adenosylmethionine (AdoMet) is the most widely used alkyl group donor in biological systems. The formation of AdoMet from ATP and L-methionine is catalyzed by S-adenosylmethionine synthetase (AdoMet synthetase). Elucidation of the conformations of enzyme-bound substrates, product, and inhibitors is important for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. To obtain structural data for enzyme-bound substrates and product, we have used two-dimensional transferred nuclear Overhauser effect spectroscopy to determine the conformation of enzyme-bound AdoMet and 5'-adenylyl imidodiphosphate (AMPPNP). AMPPNP, an analogue of ATP, is resistant to the ATP hydrolysis activity of AdoMet synthetase because of the presence of a nonhydrolyzable NH-link between the beta- and gamma-phosphates but is a substrate for AdoMet formation during which tripolyphosphate is produced. AdoMet and AMPPNP both bind in an anti conformation about the glycosidic bond. The ribose rings are in C3'-exo and C4'-exo conformations in AdoMet and AMPPNP, respectively. The differences in ribose ring conformations presumably reflect the different steric requirements of the C5' substituents in AMPPNP and AdoMet. The NMR-determined conformations of AdoMet and AMPPNP were docked into the E. coli AdoMet synthetase active site taken from the enzyme.ADP. Pi crystal structure. Since there are no nonexchangeable protons either in the carboxy-terminal end of the methionine segment of AdoMet or in the tripolyphosphate segment of AMPPNP, these portions of the molecules were modeled into the enzyme active site. The interactions of AdoMet and AMPPNP with the enzyme predict the location of the methionine binding site and suggest how the positive charge formed on the sulfur during AdoMet synthesis is stabilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号