首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rous sarcoma virus-transformed rat liver cell line RSV-BRL secreted a neutral proteinase in a latent precursor form with a molecular weight (Mr) of 57,000 (57k) as a major secreted protein. This enzyme was a calcium-dependent metallo-proteinase. The proenzyme was purified from the serum-free conditioned medium of the transformed cells by affinity chromatographies on a zinc chelate Sepharose column and a reactive red agarose column. When activated by treatment with trypsin or p-aminophenylmercuric acetate (APMA) in the presence of Ca2+, the purified enzyme effectively hydrolyzed casein, fibronectin, and laminin. Type IV collagen was hydrolyzed at 37 degrees C but not at 30 degrees C by the enzyme, whereas type I and type III collagens were hardly hydrolyzed even at 37 degrees C. The treatment with trypsin or AMPA in the presence of Ca2+ converted this 57k proenzyme to an active and stable enzyme with Mr 42k. In the absence of Ca2+, however, APMA converted the proenzyme to an intermediate form with Mr 45k, while trypsin digested it to an inactive peptide with Mr 30k. These results demonstrate that calcium ion is essential for the activation, activity expression, and stabilization of this metallo-proteinase. Analysis of its partial amino acid sequence and amino acid composition showed that the 57k proenzyme was identical or closely related to the putative protein transin, a rat homologue of stromelysin.  相似文献   

2.
The metalloproteinase 'gelatinase' stored in the granules of pig polymorphonuclear leucocytes has been purified in the latent form. The enzyme is secreted as an Mr 97,000 proenzyme that can be activated in the presence of 4-aminophenylmercuric acetate (APMA) by self-cleavage to generate lower-Mr species, of which an Mr 88,000 form was the most active. Trypsin-initiated activation generated different Mr gelatinases of much lower specific activity. Activation was slowed but not prevented by the presence of the tissue inhibitor of metalloproteinases, TIMP. The activated gelatinase formed a stable complex (Mr 144,000) with TIMP, in a Zn2+- and Ca2+-dependent manner, and complex formation was inhibited by the presence of the substrate gelatin. Similar to the human granulocyte gelatinase, the organomercurial-activated pig enzyme degraded gelatin and TCA and TCB fragments of type I collagen, as well as elastin and types IV and V collagen. The degradation of type IV collagen was shown, both by polyacrylamide-gel electrophoresis and by electron microscopic analysis, to generate 3/4 and 1/4 fragments as described for mouse tumour type IV collagenase. Furthermore, an antiserum raised to mouse type IV collagenase recognized the pig granulocyte gelatinase. An antiserum to the pig polymorphonuclear leucocyte gelatinase recognized other high-Mr gelatinases, including those from human granulocytes, pig monocytes and rabbit connective tissue cells, but not the Mr 72,000 enzyme from connective tissue cells. These data suggest that there are two distinct major forms of gelatinolytic activity that also cause specific cleavage of type IV collagen. These enzymes are associated with a wide variety of normal connective tissue and haemopoietic cells, as well as many tumour cells.  相似文献   

3.
Rabbit synovial fibroblasts induced to undergo a specific switch in gene expression by agents that alter cell morphology secreted the neutral proteinase precursor procollagenase (apparent Mr of 53,000 and 57,000). A major Mr = 51,000 polypeptide that was always induced coordinately with procollagenase has now been identified as the proenzyme form of a metal-dependent proteinase active at neutral pH. We have named this proteinase stromelysin. Prostromelysin and procollagenase were the most prominent [35S]methionine-labeled secreted proteins of the induced fibroblasts. By the use of casein degradation as an assay for enzyme activity, stromelysin was isolated with high yield from the conditioned culture medium of 12-O-tetradecanoylphorbol 13-acetate-treated fibroblasts and migrated as an active form of Mr = 21,000 that was immunologically identical to the proteoglycan-degrading proteinase purified from rabbit bone. Immunoglobulin G from antiserum raised to purified rabbit bone proteoglycanase immunoprecipitated the Mr = 51,000 proenzyme form from conditioned medium of induced rabbit cells and also immunoprecipitated an Mr = 55,000 polypeptide from induced human fibroblasts. When rabbit prostromelysin was activated by trypsin or 4-aminophenylmercuric acetate, the proenzyme was converted to an active form of Mr = 41,000. During the course of the purification, prostromelysin was converted to an additional activatable form of Mr = 35,000 and additional active forms of Mr = 21,000-25,000, which had related peptide maps distinct from collagenase. All of these forms were immunologically cross-reactive. Purified stromelysin degraded casein, cartilage proteoglycans, fibronectin, alpha 1-proteinase inhibitor, and immunoglobulin G2a and had limited activity on laminin, elastin, type IV collagen, and gelatin, but did not degrade type I collagen. Stromelysin was inhibited by EDTA, 1,10-phenanthroline, and the specific glycoprotein tissue inhibitor of metalloproteinases isolated from human amniotic fluid and was therefore classified as a metalloproteinase.  相似文献   

4.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

5.
We have reported that SV40-transformed human lung fibroblasts secrete a 92-kDa metalloprotease which is not detectable in the parental cell line IMR-90. We now present the complete structure of this enzyme along with the evidence that it is identical to the 92-kDa metalloprotease secreted by normal human alveolar macrophages, phorbol ester-differentiated monocytic leukemia U937 cells, fibrosarcoma HT1080 cells, and cultured human keratinocytes. A similar, perhaps identical, enzyme can be released by polymorphonuclear cells. The preproenzyme is synthesized as a polypeptide of predicted Mr 78,426 containing a 19 amino-acid-long signal peptide and secreted as a single 92,000 glycosylated proenzyme. The purified proenzyme complexes noncovalently with the tissue inhibitor of metalloproteases (TIMP) and can be activated by organomercurials. Activation with phenylmercuric chloride results in removal of 73 amino acids from the NH2 terminus of the proenzyme, yielding an active form capable of digesting native types IV and V collagen. The in vitro substrate specificity of the enzyme using these substrates was indistinguishable from that of the 72-kDa type IV collagenase. The 92-kDa type IV collagenase consists of five domains; the amino-terminal and zinc-binding domains shared by all members of the secreted metalloprotease gene family, the collagen-binding fibronectin-like domain also present in the 72-kDa type IV collagenase, a carboxyl-terminal hemopexin-like domain shared by all known enzymes of this family with the exception of PUMP-1, and a unique 54-amino-acid-long proline-rich domain homologous to the alpha 2 chain of type V collagen.  相似文献   

6.
A rat osteosarcoma cell clone (ROS 17/2), and osteoblast-enriched populations from rat calvaria cultured in the presence of concanavalin A, have been shown to produce latent collagenase and collagenase inhibitors. The enzymes and inhibitor activities from the ROS 17/2 cells were concentrated by ammonium sulphate precipitation and separated by gel filtration on AcA 54 resin. The size of the latent collagenase (Mr approximately equal to 58000) was reduced on conversion to active enzyme (Mr approximately equal to 48000) by p-aminophenylmercuric acetate. Latent and active forms of gelatinase activity, similar in size to the corresponding forms of collagenase, were also resolved. The collagenase inhibitor activity, which was sensitive to organomercurials, was recovered in two peaks (Mr approximately equal to 68000 and 30000). The active collagenase cleaved interstitial collagens (type I = III greater than II) producing typical 3/4 and 1/4 fragments. This activity was inhibited by the metal ion chelators ethylenediaminetetraacetic acid and o-phenanthroline. Additional specific cleavages of native collagen were also observed which, from the susceptibility of this activity to phenylmethylsulphonyl fluoride, leupeptin and antipain, suggested the presence of a second collagenolytic enzyme. This synthesis of collagenolytic enzymes by these osteoblast-like cells suggests that individual osteoblasts, like fibroblasts, are capable of both synthesizing and degrading their respective organic matrices in vivo.  相似文献   

7.
Metalloproteinase inhibitors were surveyed with the culture media of 19 kinds of human tumor cell lines, using transin (rat stromelysin) as the target enzyme. This survey showed that most of the cell lines more or less secreted inhibitor activity, and that a human hepatoma cell line, HLE, secreted an extremely high inhibitor activity into the culture medium. Two kinds of metalloproteinase inhibitors were purified from the serum-free conditioned medium of HLE cells. The major inhibitor, which showed a single protein band with a molecular weight (Mr) of 21,000 (21k) (nonreduced) or 24k (reduced) on SDS-polyacrylamide gel electrophoresis, was identified as TIMP-2 (tissue inhibitor of metalloproteinases-2) by the analysis of its N-terminal amino acid sequence. The other was immunologically identified as TIMP. Purified TIMP-2 inhibited the activities of transin, matrin (pump-1), Mr 72k gelatinase, and interstitial collagenase with 1:1 stoichiometry. When the latent precursor form (Mr 57k) of transin was incubated with p-aminophenylmercuric acetate as an activating reagent, TIMP-2 inhibited the conversion of the intermediate form (Mr 45k) into the mature enzyme (Mr 42k). This indicated that TIMP-2 regulates not only the activity of the mature enzyme but also the autolytic processing of the proenzyme. TIMP-2 also inhibited in vitro tumor invasion through reconstituted basement membrane (matrigel) in chemotaxis chambers, showing that the metalloproteinase inhibitors as well as the extracellular matrix metalloproteinases are involved in tumor invasion through basement membrane and other extracellular matrices.  相似文献   

8.
The extracellular matrix (ECM) is an important regulator of mammary epithelial cell function both in vivo and in culture. Substantial remodeling of ECM accompanies the structural changes in the mammary gland during gestation, lactation and involution. However, little is known about the nature of the enzymes and the processes involved. We have characterized and studied the regulation of cell-associated and secreted mammary gland proteinases active at neutral pH that may be involved in degradation of the ECM during the different stages of mammary development. Mammary tissue extracts from virgin and pregnant CD-1 mice resolved by zymography contained three major proteinases of 60K (K = 10(3) Mr), 68K and 70K that degraded denatured collagen. These three gelatinases were completely inhibited by the tissue inhibitor of metalloproteinases. Proteolytic activity was lowest during lactation especially for the 60K gelatinase which was shown to be the activated form of the 68K gelatinase. The activated 60K form decreased prior to parturition but increased markedly after the first two days of involution. An additional gelatin-degrading proteinase of 130K was expressed during the first three days of involution and differed from the other gelatinases by its lack of inhibition by the tissue inhibitor of metalloproteinases. The activity of the casein-degrading proteinases was lowest during lactation. Three caseinolytic activities were detected in mammary tissue extracts. A novel 26K cell-associated caseinase--a serine arginine-esterase--was modulated at different stages of mammary development. The other caseinases, at 92K and a larger than 100K, were not developmentally regulated. To find out which cell type produced the proteinases in the mammary gland, we isolated and cultured mouse mammary epithelial cells. Cells cultured on different substrata produced the full spectrum of gelatinases and caseinases seen in the whole gland thus implicating the epithelial cells as a major source of these enzymes. Analysis of proteinases secreted by cells grown on a reconstituted basement membrane showed that gelatinases were secreted preferentially in the direction of the basement membrane. The temporal pattern of expression of these proteinases and the basal secretion of gelatinases by epithelial cells suggest their involvement in the remodelling of the extracellular matrix during the different stages of mammary development and thus modulation of mammary cell function.  相似文献   

9.
We have documented changes in collagenolytic/gelatinolytic enzymes of the matrix metalloproteinase family (MMP) in remodelling rabbit cornea. MMP-2 (65 kDa gelatinase) in the proenzyme form is synthesized by the cells of the normal corneal stroma. After keratectomy the level of MMP-2 is increased in the stroma and enzyme appears in both pro- and activated forms. In addition, corneal cells synthesize MMP-9 (92 kDa gelatinase) in the proenzyme form after keratectomy; expression occurs in both the epithelial as well as stromal corneal layers. Changes in expression of both enzymes are precisely localized to the repairing portion of cornea, but demonstrate important differences in timing that correlate with the timing of specific events of matrix remodelling. Our data suggest that each of the gelatinases plays a different role in tissue remodelling after injury. We hypothesize that MMP-2 performs a surveillance function in normal cornea, catalyzing degradation of collagen molecules that occasionally become damaged. After wounding, this enzyme appears to participate in the prolonged process of collagen remodelling in the corneal stroma that eventually results in functional regeneration of the tissue. MMP-9 expression does not correlate with stromal remodelling, but we suggest that the enzyme might play a part in controlling resynthesis of the epithelial basement membrane.  相似文献   

10.
Chicken embryo fibroblasts (CEF) transformed by Rous sarcoma virus (RSVCEF) secrete a 70-kDa metallo-gelatinase at elevated levels over that of normal CEF. The 70-kDa enzyme has been purified from RSVCEF conditioned medium and represents 1-3% of the total protein in the RSVCEF conditioned medium. A 22-kDa protein, which appears to be the avian form of the tissue inhibitor of metalloproteases (TIMP), is co-isolated in association with the 70-kDa enzyme and can be separated from the enzyme by gel filtration carried out under denaturing conditions. The isolated 70-kDa species is in the zymogen form. It can be activated by treatment with the organomercurial, p-aminophenylmercuric acetate (APMA), yielding a 62-kDa active species derived by an apparent autoproteolytic cleavage from the 70-kDa proenzyme as determined by both substrate gel analysis and immunoblots using a monospecific antibody to the 70-kDa proenzyme. The proenzyme is poorly activated by trypsin and not activated by plasmin. The APMA-activated enzyme rapidly degrades denatured collagens but under identical conditions is unable to degrade native collagens, including basement membrane type IV collagen. Only at very high enzyme to substrate ratios (1:2) will native type IV collagen be hydrolyzed. Partial N-terminal amino acid sequencing of both the 70-kDa proenzyme and the 62-kDa active enzyme indicates that the avian enzyme is a member of the matrix metalloprotease family (MMP-2). When CEF cultures, infected with a temperature sensitive mutant of RSV, conditional for the expression of the transforming src oncogene, were incubated at the permissive and nonpermissive temperatures, differential levels of the 70-kDa enzyme were produced in direct proportion to the functioning of the src oncogene.  相似文献   

11.
A third metalloendopeptidase activity, gelatinase, has been completely separated from the collagenase and proteoglycanase activities of rabbit bone culture medium. Although the proteinase could not be purified to homogeneity in large amounts, it was possible to obtain accurate molecular weight values and activity after electrophoresis on non-reduced SDS/polyacrylamide gels. The latent form had an Mr of 65 000 which could be activated with 4-aminophenylmercuric acetate, APMA, to a form of Mr 61 000; under reducing conditions the latent and active forms had Mr of 72 000 and 65 000, respectively. Trypsin was a very poor activator of the latent enzyme. Gelatinase degraded gelatins derived from the interstitial collagens and it also had low activity on native types IV and V collagen and on insoluble elastin. Gelatinase acted synergistically with collagenase in degrading insoluble interstitial collagen. The specific mammalian tissue inhibitor of metalloproteinases inhibited gelatinase by forming a stable inactive complex. Comparison of the properties of gelatinase with those of collagenase and proteoglycanase suggest that the three proteinases form a family which together are capable of degrading all the major macromolecules of connective tissue matrices.  相似文献   

12.
We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).  相似文献   

13.
Human gingival fibroblast gelatinase (type IV collagenase) has been purified to homogeneity using a combination of ion exchange chromatography, gel filtration and affinity chromatography. The purified proenzyme electrophoresed under reducing conditions as a single band of 72 kDa which could be activated to a species of 65 kDa. Gelatinase was activated by organomercurials by a process apparently initiated by a conformational change and involving self-cleavage. It was not activated by trypsin or plasmin unlike the other family members, collagenase and stromelysin. Gelatinase otherwise exhibited properties typical of the metalloproteinases: it was inhibited by metal chelating agents and by the specific inhibitor TIMP (tissue inhibitor of metalloproteinases). Its major substrate was shown to be denatured collagen although it was also able to degrade native type IV and V collagens. A polyclonal antibody was raised in a sheep using the purified enzyme as antigen. The antiserum recognised and specifically inhibited the 72-kDa gelatinase but not a 95-kDa gelatinase from pig leukocytes. It was used in immunolocalisation studies on human fibroblasts to investigate the regulation of the production of the two Mr forms of gelatinase. These studies clearly demonstrate that human fibroblasts constitutively synthesize and secrete 72-kDa gelatinase but that 95-kDa gelatinase was inducible by agents such as cytokines. The significance of these results in relation to the likely in vivo r?le of gelatinases is discussed.  相似文献   

14.
The lysosomal cystein proteinase cathepsin B is shown to be secreted by ten human colon carcinoma cell lines and to accumulate in culture media as a latent enzyme. The cell lines also secrete a physiological inhibitor of cathepsin B, cystatin C. A significant correlation was found between secretion of the latent enzyme and the inhibitor (r = 0.755, P < 0.01). The aim of the present study was to modulate the respective secretion of the two antagonists to test whether or not latency of cathepsin B was due to the concomitant secretion of the inhibitor. SW480 colon carcinoma cells were treated with the acidotropic agent ammonium chloride, phorbol 12-myristate 13-acetate, and the inflammatory cytokines TGF-β, TNF-α, and IL-1β. Ammonium chloride significantly increased latent cathepsin B levels without affecting the constitutive secretion of cystatin C. Phorbol 12-myristate 13-acetate induced a 4- to 5-fold increase in secreted latent cathepsin B, but did not alter significantly the accumulation of cystatin C in media. The cytokines, TGF-β, TNF-α, and IL-1β, had no major effect on the expression of these two antagonists. Latent cathepsin B released from human carcinoma cells could be efficiently activated by neutrophil elastate at neutral pH. It is concluded that latent cathepsin B is a true proenzyme rather than an enzyme-inhibitor comples. In addition, our data from neutrophil elastate activation experiments indicate that a proteolytic system for activation of the tumor cell-secreted latent enzyme may exist in vivo.  相似文献   

15.
Tyrosinase is expressed as a 67-kDa protein in Pholiota microspora (synonym Pholiota nameko), whereas the same enzyme purified from fruiting bodies of P. microspora is a 42-kDa protein that is cleaved with a C-terminal 25-kDa polypeptide from the 67-kDa protein. To confirm the role of C-terminal processing in enzyme activity, we expressed a recombinant 67-kDa tyrosinase in Escherichia coli cells. To obtain a soluble protein, the recombinant tyrosinase was expressed as a thioredoxin fusion protein with an enterokinase-cleavable site. Enterokinase digestion of the fusion protein produced a recombinant 67-kDa tyrosinase that did not have any catalytic activity. However, chymotrypsin digestion of the fusion protein produced a recombinant 44-kDa tyrosinase that was catalytically active and had a 25-kDa cleaved C-terminal. Kinetic parameters of the 44-kDa tyrosinase were similar to those of the 42-kDa tyrosinase purified from the fruiting bodies. These results suggest that tyrosinase is expressed in P. microspora as a latent 67-kDa proenzyme and is converted to the mature active 42-kDa enzyme by proteolytic processing of the C-terminal.  相似文献   

16.
Serpins form a family of structurally related proteins, many of which function in plasma as inhibitors of serine proteases involved in inflammation, blood coagulation, fibrinolysis, and complement activation. To further characterize the mechanism by which serpins inhibit their target enzymes, we have studied the effect of temperature on the reaction of C1 inhibitor and the serine protease plasma kallikrein. At both 38 and 4 degrees C, C1 inhibitor (Mr 105,000) is cleaved by alpha-kallikrein (Mr 85,000 and 88,000) at position P1 (Arg444) of the reactive center, a reaction that leads to the formation of a covalent bimolecular enzyme-serpin complex (Mr 195,000) and cleaved but uncomplexed serpin (Mr 95,000). Between 38 and 4 degrees C, the product distribution is temperature-dependent, with more cleaved C1 inhibitor (Mr 95,000) formed at lower temperatures and correspondingly less Mr 195,000 complex. Studies employing intrinsic tryptophan fluorescence and 1H NMR spectroscopy show that this behavior is not caused by temperature-dependent conformational changes of kallikrein or C1 inhibitor. C1 inhibitor also behaves in this manner with the light chain of kallikrein and, to a lesser extent, with plasmin and C1s. These data are best explained by a branched reaction pathway, identical with the scheme describing the mechanism of action of suicide substrates. This scheme involves the formation of an enzyme-inhibitor intermediate, which can be stabilized into a covalent complex and/or dissociate into free enzyme and cleaved inhibitor, depending on the reaction conditions.  相似文献   

17.
We have cloned and sequenced the Saccharomyces cerevisiae gene for S-adenosylmethionine decarboxylase. This enzyme contains covalently bound pyruvate which is essential for enzymatic activity. We have shown that this enzyme is synthesized as a Mr 46,000 proenzyme which is then cleaved post-translationally to form two polypeptide chains: a beta subunit (Mr 10,000) from the amino-terminal portion and an alpha subunit (Mr 36,000) from the carboxyl-terminal portion. The protein was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme contains both the alpha and beta subunits. About half of the alpha subunits have pyruvate blocking the amino-terminal end; the remaining alpha subunits have alanine in this position. From a comparison of the amino acid sequence deduced from the nucleotide sequence with the amino acid sequence of the amino-terminal portion of each subunit (determined by Edman degradation), we have identified the cleavage site of the proenzyme as the peptide bond between glutamic acid 87 and serine 88. The pyruvate moiety, which is essential for activity, is generated from serine 88 during the cleavage. The amino acid sequence of the yeast enzyme has essentially no homology with S-adenosylmethionine decarboxylase of E. coli (Tabor, C. W., and Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040) and only a moderate degree of homology with the human and rat enzymes (Pajunen, A., Crozat, A., J?nne, O. A., Ihalainen, R., Laitinen, P. H., Stanley, B., Madhubala, R., and Pegg, A. E. (1988) J. Biol. Chem. 263, 17040-17049); all of these enzymes are pyruvoyl-containing proteins. Despite this limited overall homology the cleavage site of the yeast proenzyme is identical to the cleavage sites in the human and rat proenzymes, and seven of the eight amino acids adjacent to the cleavage site are identical in the three eukaryote enzymes.  相似文献   

18.
A specific collagenase (EC 3.4.24.3) has been found and purified from serum-free culture medium of 11095 epidermoid carcinoma of rat prostate. The molecular weight of this collagenase was estimated at 71 000 and the pH optimum was approx. 7. At 26 degrees C, the collagenase cleaved collagen at a site 3/4 the length from the N-terminus. At 37 degrees C, this collagenase degraded collagen to smaller peptides. The enzyme activity was inhibited by serum, cysteine and EDTA, but not by protease inhibitors. The presence of collagenase in rat tumor tissue suggests that this enzyme might play a significant role in tissue invasion by cancer cells.  相似文献   

19.
The main sulphated proteins secreted by rat mammary gland tissue have Mr of approximately 32 000, 27 000 and 25 000 Da. In addition, there are high Mr components which have a diffuse electrophoretic mobility (Mr > 200 000) and most likely corresponded to proteoglycans. The sulphate groups in the proteins with discrete Mr are most likely all linked to carbohydrates. These sulphated molecules were partially purified and identified to isoforms of rat alpha-lactalbumin for the 25-27 kDa bands and to kappa-casein for the 32 kDa band. This pattern of protein sulphation is, as far as we know, quite specific to rat mammary epithelial cells.  相似文献   

20.
Human neutrophils contain a neutral metalloproteinase which degrades denatured collagens and potentiates the action of interstitial collagenase. This gelatinase is rapidly secreted from neutrophils stimulated with phorbol myristate acetate. The secreted enzyme has been purified by a combination of chromatography on DEAE-cellulose and gelatin-Sepharose. The purified enzyme was latent and had a specific activity of 24,000 units. Estimated molecular weight obtained by gel filtration was 150,000-180,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed three bands with relative molecular weights of 225,000, 130,000, and 92,000. Electrophoresis in the presence of a reducing agent revealed a single band of Mr = 92,000. All the proteins seen on the unreduced gel were found to contain proteolytic activity against gelatin and native type V collagen. Polyclonal antibodies were prepared against the Mr = 130,000 and 92,000 proteins. When analyzed by immunoblotting, both antibodies recognized all three proteins. Furthermore, the identical three proteins were identified by the antibodies when crude culture medium was immunoblotted. The purified enzyme was inhibited by EDTA and 1,10-phenanthroline but not by serine or thiol proteinase inhibitors, suggesting that the enzyme is a metalloendoproteinase. The enzyme had little or no activity against common protein substrates such as bovine serum albumin or casein. Native type I collagen was not cleaved under conditions where native type V collagen was extensively degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号