共查询到20条相似文献,搜索用时 15 毫秒
1.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation. 相似文献
2.
Rangarajan M Aduse-Opoku J Paramonov N Hashim A Bostanci N Fraser OP Tarelli E Curtis MA 《Journal of bacteriology》2008,190(8):2920-2932
We previously described a cell surface anionic polysaccharide (APS) in Porphyromonas gingivalis that is required for cell integrity and serum resistance. APS is a phosphorylated branched mannan that shares a common epitope with posttranslational additions to some of the Arg-gingipains. This study aimed to determine the mechanism of anchoring of APS to the surface of P. gingivalis. APS was purified on concanavalin A affinity columns to minimize the loss of the anchoring system that occurred during chemical extraction. (1)H nuclear magnetic resonance spectroscopy of the lectin-purified APS confirmed the previous structure but also revealed additional signals that suggested the presence of a lipid A. This was confirmed by fatty acid analysis of the APS and matrix-assisted laser desorption ionization-time of flight mass spectrometry of the lipid A released by treatment with sodium acetate buffer (pH 4.5). Hence, P. gingivalis synthesizes two distinct lipopolysaccharide (LPS) macromolecules containing different glycan repeating units: O-LPS (with O-antigen tetrasaccharide repeating units) and A-LPS (with APS repeating units). Nonphosphorylated penta-acylated and nonphosphorylated tetra-acylated species were detected in lipid A from P. gingivalis total LPS and in lipid A from A-LPS. These lipid A species were unique to lipid A derived from A-LPS. Biological assays demonstrated a reduced proinflammatory activity of A-LPS compared to that of total LPS. Inactivation of a putative O-antigen ligase (waaL) at PG1051, which is required for the final step of LPS biosynthesis, abolished the linkage of both the O antigen and APS to the lipid A core of O-LPS and A-LPS, respectively, suggesting that WaaL in P. gingivalis has dual specificity for both O-antigen and APS repeating units. 相似文献
3.
Tannerella forsythia is considered a pathogen of periodontitis and forms a biofilm with multi-species bacteria in oral cavity. Lipopolysaccharide is a powerful immunostimulator and induces inflammation and shock. The purpose of this study was to investigate the characteristics of T. forsythia LPS in its co-cultivation with Fusobacterium nucleatum or Porphyromonas gingivalis. T. forsythia was co-cultured in the presence and absence of F. nucleatum and P. gingivalis and then T. forsythia LPS was extracted. The extracts were analyzed by SDS-PAGE and NF-κB reporter CHO cell lines. THP-1 cells were treated with the LPS and evaluated induction of cytokine expression by real-time RT-PCR and ELISA. For analysis of the bioactivity of T. forsythia LPS, the binding assay on LPS-binding protein (LBP) and CD14 was processed. The extracts did not contaminate other molecules except LPS and showed TLR4 agonists. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower level of induction of TNF-α, IL-1β, and IL-6 expression than singleor co-cultured T. forsythia LPS with F. nucleatum in the conditions of human serum. However, the three T. forsythia LPS did not show difference of cytokine induction in the serum free conditions. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower affinity to LBP and CD14 as binding site of O-antigen and attached at a lower level to THP-1 cells compared to single- or co-cultured T. forsythia LPS with F. nucleatum. The virulence of T. forsythia LPS was decreased by co-culturing with P. gingivalis and their affinity to LBP and CD14 was reduced, which may due to modification of O-antigen chain by P. gingivalis. 相似文献
4.
5.
苏阳 《中国微生态学杂志》2020,32(1):40-43
目的 观察牙龈卟啉单胞菌感染通过激活含NLR家族PYRIN域蛋白3(NLRP3)小体诱导人牙周膜细胞(hPDLCs)炎症反应及凋亡的效应。 方法 取健康前磨牙样本并分离培养hPDLCs,分为牙龈卟啉单胞菌感染的感染组和常规处理的对照组,检测细胞中NLRP3小体[NLRP3、凋亡相关斑点样蛋白(ASC)、含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)-1]、凋亡基因[自杀相关因子(Fas)、Fas配体(FasL)、B淋巴细胞瘤-2基因(Bcl-2)、Bcl-2相关x蛋白(Bax)、Caspase-3]的表达量及培养基中炎症细胞因子[白细胞介素(IL)-1β、IL-18、肿瘤坏死因子-α(TNF-α)]的含量。 结果 感染组hPDLCs中NLRP3、ASC、Caspase-1、Fas、FasL、Bax、Caspase-3的表达量及培养基中IL-1β、IL-18、TNF-α的含量明显高于对照组,细胞中Bcl-2的表达量明显低于对照组。 结论 牙龈卟啉单胞菌感染能够诱导hPDLCs的炎症反应及凋亡且该作用与NLRP3小体的激活有关。 相似文献
6.
陈洁点 《中国微生态学杂志》2020,32(5):537-540
目的观察牙龈卟啉单胞菌(P.gingivalis)感染对人牙周膜(hPDL)细胞中成骨标志基因表达及炎症因子分泌的影响。方法原代hPDL细胞,分为P.gingivalis感染的P.gingivalis组、常规处理的对照组,成骨诱导后茜素红染色检测矿化结节,PCR法检测成骨标志基因Runt相关转录因子2(RUNX2)、骨钙素(OCN)、骨保护素(OPG)、骨碱性磷酸酶(BALP)的mRNA表达量,ELISA法检测炎症因子肿瘤坏死因子-α(TNF-α)、白细胞介素(IL)-1β、IL-6的分泌量,Western blot检测核因子-κB(NF-κB)及NF-κB抑制蛋白(I-κB)的蛋白表达量。结果与对照组比较,P.gingivalis组细胞成骨诱导后茜素红染色的矿化结节明显减少,细胞中RUNX2、OCN、OPG、BALP的mRNA表达量及I-κB的蛋白表达量均明显降低,培养基中TNF-α、IL-1β、IL-6的分泌量及细胞中NF-κB的蛋白表达量均明显增加。结论 P.gingivalis感染hPDL细胞后能够抑制成骨分化、激活炎症反应且该作用与NF-κB通路的激活有关。 相似文献
7.
Quan Xing Qingsong Ye Mingwen Fan Yi Zhou Qiang Xu Andrew Sandham 《Journal of cellular physiology》2010,225(1):106-114
Although Porphyromonas gingivalis lipopolysaccharide (P‐LPS) is known to inhibit osteoblast differentiation, the exact molecular mechanisms underlying this phenomenon remain unclear. Here, we investigated the role of Notch signaling in the osteoblastic differentiation of both MC3T3E‐1 cells and primary mouse bone marrow stromal cells (BMSCs). P‐LPS stimulation activated the Notch1 signaling cascade and increased expression of the Notch target genes HES1 and HEY1. P‐LPS can also act as an inhibitor because it is capable of suppressing Wnt/β‐catenin signaling in preosteoblasts by decreasing both glycogen synthase kinase‐3β (GSK‐3β) phosphorylation and the expression of nuclear β‐catenin. These effects were rescued, however, by inhibiting Notch1 signaling. Furthermore, P‐LPS treatment inhibited osteoblast differentiation in preosteoblasts as demonstrated by reductions in alkaline phosphatase activity, osteoblast gene expression, and mineralization, all of which were rescued by suppression of Notch1 signaling. Moreover, inhibition of GSK‐3β, HES1, or HEY1 partially reversed the P‐LPS‐induced inhibition of osteoblast differentiation. Together, these findings suggest that P‐LPS inhibits osteoblast differentiation by promoting the expression of Notch target genes and suppressing canonical Wnt/β‐catenin signaling. J. Cell. Physiol. 225: 106–114, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
8.
N Paramonov D Bailey M Rangarajan A Hashim G Kelly M A Curtis E F Hounsell 《European journal of biochemistry》2001,268(17):4698-4707
The lipopolysaccharide (LPS) of Porphyromonas gingivalis is an important pro-inflammatory molecule in periodontal disease and a significant target of the host's specific immune response. In addition, we recently demonstrated using monoclonal antibodies that the Arg-gingipains of P. gingivalis are post-translationally modified with glycan chains that are immunologically related to an LPS preparation from this organism. In the present investigation, we determined the structure of the O-polysaccharide of P. gingivalis W50 that was fully characterized on the basis of 1D and 2D NMR (DQF-COSY, TOCSY, NOESY, ROESY, 1H-13C HSQC and 1H-31P HXTOCSY) and GC-MS data. These data allowed us to conclude that the O-polysaccharide is built up of the tetrasaccharide repeating sequence: -->6)-alpha-D-Glcp-(1-->4)-alpha-L-Rhap-(1-->3)-beta-D-GalNAc-(1-->3)-alpha-D-Galp-(1--> and carries a monophosphoethanolamine residue at position C-2 of the alpha-rhamnose residue in a nonstoichiometric (approximately 60%) amount. These data indicate that the O-polysaccharide of P. gingivalis LPS is composed of an unusually modified tetrasaccharide repeating unit. 相似文献
9.
Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. 总被引:8,自引:0,他引:8 下载免费PDF全文
The chemical structure of lipid A isolated from Porphyromonas gingivalis lipopolysaccharide was elucidated by compositional analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy. The hydrophilic backbone of free lipid A was found to consisted of beta(1,6)-linked D-glucosamine disaccharide 1-phosphate. (R)-3-Hydroxy-15-methylhexadecanoic acid and (R)-3-hydroxyhexadecanoic acid are attached at positions 2 and 3 of the reducing terminal residue, respectively, and positions 2' and 3' of the nonreducing terminal unit are acylated with (R)-3-O-(hexadecanoyl)-15-methylhexadecanoic acid and (R)-3-hydroxy-13-methyltetradecanoic acid, respectively. The hydroxyl group at position 4' is partially replaced by another phosphate group, and the hydroxyl groups at positions 4 and 6' are unsubstituted. Considerable heterogeneity in the fatty acid chain length and the degree of acylation and phosphorylation was detected by liquid secondary ion-mass spectrometry (LSI-MS). A significant pseudomolecular ion of lipid A at m/z 1,769.6 [M-H]- corresponding to a diphosphorylated GlcN backbone bearing five acyl groups described above was detected in the negative mode of LSI-MS. Predominant ions, however, were observed at m/z 1,434.9 [M-H]- and m/z 1,449.0 [M-H]-, each representing monophosphoryl lipid A lacking (R)-3-hydroxyhexadecanoic and (R)-3-hydroxy-13-methyltetradecanoic acids, respectively. The presence of mono- and diphosphorylated lipid A species was also confirmed by LSI-MS of de-O-acylated lipid A (m/z 955.3 and 1,035.2, respectively). 相似文献
10.
Background
Periodontitis is an inflammatory disease caused by pathogenic microorganisms, such as Porphyromonas gingivalis, and characterized by the destruction of the periodontium. Obese individuals have an increased risk for periodontitis and show decreased serum levels of adiponectin. This in-vitro study was established to examine whether adiponectin modulates critical effects of lipopolysaccharide (LPS) from P. gingivalis on oral epithelial cells (OECs).Methodology/Principal Findings
The presence of adiponectin and its receptors in human gingival tissue samples and OECs was analyzed by immunohistochemistry and PCR. Furthermore, OECs were treated with LPS and/or adiponectin for up to 72 h, and the gene expression and protein synthesis of pro- and anti-inflammatory mediators, matrix metalloproteinases (MMPs) and growth factors were analyzed by real-time PCR and ELISA. Additionally, cell proliferation, differentiation and in-vitro wound healing were studied. The nuclear translocation of NFκB was investigated by immunofluorescence. Gingival tissue sections showed a strong synthesis of adiponectin and its receptors in the epithelial layer. In cell cultures, LPS induced a significant up-regulation of interleukin (IL) 1β, IL6, IL8, MMP1 and MMP3. Adiponectin abrogated significantly the stimulatory effects of LPS on these molecules. Similarly, adiponectin inhibited significantly the LPS-induced decrease in cell viability and increase in cell proliferation and differentiation. Adiponectin led to a time-dependent induction of the anti-inflammatory mediators IL10 and heme oxygenase 1, and blocked the LPS-stimulated NFκB nuclear translocation.Conclusions/Significance
Adiponectin may counteract critical actions of P. gingivalis on oral epithelial cells. Low levels of adiponectin, as observed in obese individuals, may increase the risk for periodontal inflammation and destruction. 相似文献11.
Bullon P Cordero MD Quiles JL Morillo JM del Carmen Ramirez-Tortosa M Battino M 《Free radical biology & medicine》2011,50(10):1336-1343
Oxidative stress is one of the factors that could explain the pathophysiological mechanism of inflammatory conditions that occur in cardiovascular disease (CVD) and periodontitis. Such inflammatory response is often evoked by specific bacteria, as the lipopolysaccharide (LPS) of Porphyromonas gingivalis is a key factor in this process. The aim of this research was to study the role of mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) from periodontitis patients and to evaluate the influence of LPS on fibroblasts to better understand the pathophysiology of periodontitis and its relationship with CVD. PBMCs from patients showed lower CoQ10 levels and citrate synthase activity, together with high levels of ROS production. LPS-treated fibroblasts provoked increased oxidative stress and mitochondrial dysfunction by a decrease in mitochondrial protein expression, mitochondrial mass, and mitochondrial membrane potential. Our study supports the hypothesis that LPS-mediated mitochondrial dysfunction could be at the origin of oxidative stress in periodontal patients. Abnormal PBMC performance may promote oxidative stress and alter cytokine homeostasis. In conclusion, mitochondrial dysfunction could represent a possible link to understanding the interrelationships between two prominent inflammatory diseases: periodontitis and CVD. 相似文献
12.
Li Yehong Zhang Shanshan Zhang Cunxin Wang Meihong 《Molecular and cellular biochemistry》2020,466(1-2):17-24
Molecular and Cellular Biochemistry - Ankylosing spondylitis (AS) is a progressive systemic disease characterized by chronic inflammation response of the sacroiliac joint and spine. Long non-coding... 相似文献
13.
The porphyrin auxotrophic pathogen Porphyromonas gingivalis obtains the majority of essential iron and porphyrin from host hemoproteins. To achieve this, the organism expresses outer membrane gingipains containing cysteine proteinase domains linked to hemagglutinin domains. Heme mobilized in this way is taken up by P. gingivalis through a variety of potential portals where HmuY/HmuR of the hmu locus are best described. These receptors have relatively low binding affinities for heme. In this report, we describe a novel P. gingivalis protein, HusA, the product of PG2227, which rapidly bound heme with a high binding constant at equilibrium of 7 × 10(-10) M. HusA is both expressed on the outer membrane and released from the organism. Spectral analysis indicated an unusual pattern of binding where heme was ligated preferentially as a dimer. Further, the presence of dimeric heme induced protein dimer formation. Deletional inactivation of husA showed that expression of this moiety was essential for growth of P. gingivalis under conditions of heme limitation. This finding was in accord with the pronounced increase in gene expression levels for husA with progressive reduction of heme supplementation. Antibodies reactive against HusA were detected in patients with chronic periodontitis, suggesting that the protein is expressed during the course of infection by P. gingivalis. It is predicted that HusA efficiently sequesters heme from gingipains and fulfills the function of a high affinity hemophore-like protein to meet the heme requirement for growth of P. gingivalis during establishment of infection. 相似文献
14.
Yukitaka Murakami Satoshi Shizukuishi Akira Tsunemitsu Kazuhisa Nakashima Yukio Kato Saburo Aimoto 《FEMS microbiology letters》1991,82(3):253-256
Porphyromonas gingivalis 381 cells were incubated with 125I-histidine-rich polypeptide (histatin) 5 in the presence or absence of unlabeled histatin 5, to evaluate the histatin-binding capacity of the cells. The binding of histatin 5 was rapid, reversible, saturable and specific. The number of histatin 5-binding sites per cell was 3,600, and the dissociation constant (Kd) was in the order of 10(-6) M. These findings suggest that histatin interacts with certain bacterial cells through specific binding sites on their surface, and will allow the development of a histatin radioreceptor assay. 相似文献
15.
《Anaerobe》2009,15(3):87-90
BackgroundChronic periodontitis is caused by mixed bacterial infection. Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are frequently detected in deep periodontal pockets. We demonstrate that these bacteria induce proinflammatory cytokine production by the mouse macrophage-like cell line J774.1.Materials and methodsJ774.1 cells were incubated with and without bacteria for 24 h in 96-well flat-bottomed plates. The culture supernatants were analyzed by enzyme-linked immunosorbent assay for secreted mouse interleukin (IL)-6, monocyte chemoattractant protein-1, IL-23, IL-1β and tumor necrosis factor-α. The cytokine concentrations were determined using a standard curve prepared for each assay.ResultsMixed infection with P. gingivalis and either T. forsythia or T. denticola at 105 CFU/ml acted synergistically to increase IL-6 production, but not monocyte chemoattractant protein-1, IL-23, IL-1β or tumor necrosis factor-α production. Gingipain inhibitors KYT-1 and KYT-36 inhibited IL-6 production by J774.1 cells incubated with 105 CFU/ml of mixed bacteria.ConclusionThese results suggest that P. gingivalis with either T. forsythia or T. denticola directly induces synergistic IL-6 protein production and that gingipains play a role in this synergistic effect. 相似文献
16.
Hiroyuki Tada Takashi Nishioka Aya Takase Kento Numazaki Kanan Bando Kenji Matsushita 《Cellular microbiology》2019,21(3)
Interleukin (IL)‐31 is important for innate immunity in mucosal tissues and skin, and increased IL‐31 expression participates in the pathogenesis of chronic inflammatory diseases affecting the skin, airways, lungs, and intestines. We investigated the contribution of mast cells to the induction of IL‐31 production following infection with the periodontal pathogen, Porphyromonas gingivalis. We found that oral infection with P. gingivalis increased IL‐31 expression in the gingival tissues of wild‐type mice but not in those of mast cell‐deficient mice. The P. gingivalis‐induced IL‐31 production by human mast cells occurred through the activation of the JNK and NF‐κB signalling pathways and was dependent on the P. gingivalis lysine‐specific protease gingipain‐K. P. gingivalis infection induced IL‐31 receptor α and oncostatin M receptor β expression in human gingival epithelial cells. Notably, the P. gingivalis‐induced IL‐31 production by mast cells led to the downregulation of claudin‐1, a tight junction molecule, in gingival epithelial cells, resulting in an IL‐31‐dependent increase in the paracellular permeability of the gingival epithelial barrier. These findings suggest that IL‐31 produced by mast cells in response to P. gingivalis infection causes gingival epithelial barrier dysfunction, which may contribute to the chronic inflammation observed in periodontitis. 相似文献
17.
18.
Epithelial cells and macrophages play a major role in the host response to Porphyromonas gingivalis, a major etiologic agent of chronic periodontitis. Secretion of high levels of cytokines by these cells is believed to contribute to periodontal tissue destruction. To investigate the interactions between P. gingivalis and these two major cell types, we characterized the production of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-alpha) and regulated on activation normal T cell expressed and secreted (RANTES) by an in vitro co-culture model composed of epithelial-like transformed cells (HeLa cell line) and macrophage-like cells (phorbol myristic acid-differentiated U937 cell line) following a challenge with different strains of P. gingivalis. P. gingivalis cells stimulated the secretion of pro-inflammatory cytokines (IL-1beta and IL-6) and chemokines (IL-8 and RANTES) in the co-culture model. Responses to P. gingivalis infection were influenced by the macrophage/epithelial cell ratios of the cultures. In addition, the level of secretion of these inflammatory mediators was dependent on the bacterial strain and the multiplicity of infection (MOI) used. The use of a gingipain-deficient mutant of P. gingivalis or the addition of a cysteine protease inhibitor suggested that the level of cytokines secreted by the co-culture model was underestimated due to an extensive proteolytic degradation. This study showed that P. gingivalis can modulate the levels of inflammatory mediators, which may contribute to the progression of periodontitis. 相似文献
19.
Previous reports have shown that coaggregation between Porphyromonas gingivalis and Fusobacterium nucleatum, two important periodontopathogens, is mediated by a galactoside on the surface of P. gingivalis and a lectin on F. nucleatum. In the present study, purified capsular polysaccharide (CPS) and lipopolysaccharide (LPS) of P. gingivalis PK 1924 (serotype K5) were found to be able to bind to F. nucleatum cells and to inhibit binding of F. nucleatum to P. gingivalis serotype K5. Sugar binding studies showed that the requirements for binding of P. gingivalis serotype K5 CPS and LPS to the F. nucleatum lectin are: the presence of a metal divalent ion, an axial free hydroxyl group at position 4 and free equatorial hydroxyl groups at position 3 and 6 of d-galactose. These data suggest that P. gingivalis serotype K5- CPS and LPS act as receptors mediating coaggregation between P. gingivalis and fusobacteria. 相似文献
20.
Hee Sam Na Eun J. Lim So Y. Jeong Mi H. Ryu Mi Hee Park Jin Chung 《Journal of microbiology (Seoul, Korea)》2014,52(2):154-160
In the gingival tissues of patients with periodontitis, inflammatory responses are mediated by a wide variety of genes. In our previous screening study, plasminogen activator inhibitor type 1 (PAI-1) mRNA binding protein expression was increased in gingiva from periodontitis patients. In this study, we further investigated the signaling pathway involved in PAI-1 expression induced by Porphyromonas gingivalis LPS (Pg LPS) in human gingival fibroblasts (HGF). When HGFs were treated with Pg LPS, both PAI-1 mRNA expression and PAI-1 protein were induced in a dose-dependent manner. Pg LPS induced NF-κB activation and the expressions of PAI-1 mRNA and protein were suppressed by pretreating with a NF-κB inhibitor. Pg LPS also induced ERK, p38, and JNK activation, and Pg LPS-induced PAI-1 expression was inhibited by ERK/p38/JNK inhibitor pretreatment. In conclusion, Pg LPS induced PAI-1 expression through NF-κB and MAP kinases activation in HGF. 相似文献