首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of a cardiovascular stent depends on many factors, such as its ability to sustain the compression applied by the vessel wall, minimal longitudinal contraction when it is expanded, and its ability to flex when navigating tortuous blood vessels. The long-term reaction of the tissue to the stent is also device dependant; in particular some designs provoke in-stent restenosis (i.e., regrowth of the occlusion around the stent). The mechanism of restenosis is thought to involve injury or damage to the vessel wall due to the high stresses generated around the stent when it expands. Because of this, the deflection of the tissue between the struts of the stent (called prolapse or "draping") has been used as a measure of the potential of a stent to cause restenosis. In this paper, uniaxial and biaxial experiments on human femoral artery and porcine aortic vascular tissue are used to develop a hyperelastic constitive model of vascular tissue suitable for implementation in finite-element analysis. To analyze prolapse, four stent designs (BeStent 2, Medtronic AVE; NIROYAL, Boston Scientific; VELOCITY, Cordis; TETRA, Guidant) were expanded in vitro to determine their repeating-unit dimensions. This geometric data was used to generate a finite element model of the vascular tissue supported within a repeating-unit of the stent. Under a pressure of 450 mm Hg (representing the radial compression of the vessel wall), maximum radial deflection of 0.253 mm, 0.279 mm, 0.348 mm and 0.48 mm were calculated for each of the four stents. Stresses in the vascular wall were highest for the VELOCITY stent. The method is proposed as a way to compare stents relative to their potential for restenosis and as a basis for a biomechanical design of a stent repeating-unit that would minimize restenosis.  相似文献   

2.
Following the deployment of a coronary stent and disruption of an atheromatous plaque, the deformation of the arterial wall and the presence of the stent struts create a new fluid dynamic field, which can cause an abnormal biological response. In this study 3D computational models were used to analyze the fluid dynamic disturbances induced by the placement of a stent inside a coronary artery. Stents models were first expanded against a simplified arterial plaque, with a solid mechanics analysis, and then subjected to a fluid flow simulation under pulsatile physiological conditions. Spatial and temporal distribution of arterial wall shear stress (WSS) was investigated after the expansion of stents of different designs and different strut thicknesses. Common oscillatory WSS behavior was detected in all stent models. Comparing stent and vessel wall surfaces, maximum WSS values (in the order of 1Pa) were located on the stent surface area. WSS spatial distribution on the vascular wall surface showed decreasing values from the center of the vessel wall portion delimited by the stent struts to the wall regions close to the struts. The hemodynamic effects induced by two different thickness values for the same stent design were investigated, too, and a reduced extension of low WSS region (<0.5Pa) was observed for the model with a thicker strut.  相似文献   

3.
Recent clinical studies of the percutaneous transvenous mitral annuloplasty (PTMA) devices have shown a short-term reduction of mitral regurgitation after implantation. However, adverse events associated with the devices such as compression and perforation of vessel branches, device migration and fracture were reported. In this study, a finite element analysis was carried out to investigate the biomechanical interaction between the proximal anchor stent of a PTMA device and the coronary sinus (CS) vessel in three steps including: (i) the stent release and contact with the CS wall, (ii) the axial pull t the stent connector and (iii) the pressure inflation of the vessel wall. To investigate the impact of the material properties of tissues and stents on the interactive responses, the CS vessel was modelled with human and porcine material properties, and the proximal stent was modelled with two different Nitinol materials with one being stiffer than the other. The results indicated that the vessel wall stresses and contact forces imposed by the stents were much higher in the human model than the porcine model. However, the mechanical differences induced by the two stent types were relatively small. The softer stent exhibited a better fatigue safety factor when deployed in the human model than in the porcine model. These results underscored the importance of the CS tissue mechanical properties. Vessel wall stress and stent radial force obtained in the human model were higher than those obtained in the porcine model, which also brought up questions as to the validity of using the porcine model to assess device mechanical function. The quantification of these biomechanical interactions can offer scientific insight into the development and optimisation of the PTMA device design.  相似文献   

4.
Wu W  Wang WQ  Yang DZ  Qi M 《Journal of biomechanics》2007,40(11):2580-2585
Coronary restenosis after angioplasty has been reduced by stenting procedure, but in-stent restenosis (ISR) has not been eliminated yet, especially in tortuous vessels. In this paper, we proposed a finite element method (FEM) to study the expansion of a stent in a curved vessel (the CV model) and their interactions. A model of the same stent in a straight vessel (the SV model) was also studied and mechanical parameters of both models were researched and compared, including final lumen area, tissue prolapse between stent struts and stress distribution. Results show that in the CV model, the vessel was straightened by stenting and a hinge effect can be observed at extremes of the stent. The maximum tissue prolapse of the CV model was more severe (0.079 mm) than the SV model (0.048 mm); and the minimum lumen area of the CV was decreased (6.10 mm(2)), compared to that of the SV model (6.28 mm(2)). Tissue stresses of the highest level were concentrated in the inner curvature of the CV model. The simulations offered some explanations for the clinical results of ISR in curved vessels and gave design suggestions of the stent and balloon for tortuous vessels. This FEM provides a tool to study mechanisms of stents in curved vessels and can improve new stent designs especially for tortuous vessels.  相似文献   

5.
The present study illustrates a possible methodology to investigate drug elution from an expanded coronary stent. Models based on finite element method have been built including the presence of the atherosclerotic plaque, the artery and the coronary stent. These models take into account the mechanical effects of the stent expansion as well as the effect of drug transport from the expanded stent into the arterial wall. Results allow to quantify the stress field in the vascular wall, the tissue prolapse within the stent struts, as well as the drug concentration at any location and time inside the arterial wall, together with several related quantities as the drug dose and the drug residence times.  相似文献   

6.
The present study illustrates a possible methodology to investigate drug elution from an expanded coronary stent. Models based on finite element method have been built including the presence of the atherosclerotic plaque, the artery and the coronary stent. These models take into account the mechanical effects of the stent expansion as well as the effect of drug transport from the expanded stent into the arterial wall. Results allow to quantify the stress field in the vascular wall, the tissue prolapse within the stent struts, as well as the drug concentration at any location and time inside the arterial wall, together with several related quantities as the drug dose and the drug residence times.  相似文献   

7.
Two different stent configurations (i.e. the well known Palmaz–Schatz (PS) and a new stent configuration) are mechanically investigated. A finite element model was used to study the two geometries under combining loads and a computational fluid dynamic model based on fluid structure interaction was developed investigating the plaque and the artery wall reactions in a stented arterial segment. These models determine the stress and displacement fields of the two stents under internal pressure conditions. Results suggested that stent designs cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which have impact in the vessel responses such as the restenosis. The hemodynamic analysis shows the use of new stent geometry suggests better biofluid mechanical response such as the deformation and the progressive amount of plaque growth.  相似文献   

8.
Wu W  Qi M  Liu XP  Yang DZ  Wang WQ 《Journal of biomechanics》2007,40(13):3034-3040
Carotid angioplasty and stenting (CAS) has emerged as an effective alternative to carotid endarterectomy, and nitinol stents are commonly used in CAS. To evaluate biomechanical properties of nitinol carotid stents and their interactions with carotid arteries, a finite element method (FEM) model was built which is composed of a stenotic carotid tissue, a segmented-design nitinol stent and a sheath. Two different stents were considered to show the influence of stent design on the stent-vessel interactions. Results show that the superelastic stents were delivered into the stenotic vessel lumen through the sheath and self-expanded in the internal and common carotid artery. The stent with shorter struts may have better clinical results and the different stent designs can cause different carotid vessel geometry changes. This FEM can provide a convenient way to test and improve biomechanical properties of existing carotid stents and give clues for new nitinol carotid stent designs.  相似文献   

9.
Cardiovascular stent design and vessel stresses: a finite element analysis   总被引:19,自引:0,他引:19  
Intravascular stents of various designs are currently in use to restore patency in atherosclerotic coronary arteries and it has been found that different stents have different in-stent restenosis rates. It has been hypothesized that the level of vascular injury caused to a vessel by a stent determines the level of restenosis. Computational studies may be used to investigate the mechanical behaviour of stents and to determine the biomechanical interaction between the stent and the artery in a stenting procedure. In this paper, we test the hypothesis that two different stent designs will provoke different levels of stress within an atherosclerotic artery and hence cause different levels of vascular injury. The stents analysed using the finite-element method were the S7 (Medtronic AVE) and the NIR (Boston Scientific) stent designs. An analysis of the arterial wall stresses in the stented arteries indicates that the modular S7 stent design causes lower stress to an atherosclerotic vessel with a localized stenotic lesion compared to the slotted tube NIR design. These results correlate with observed clinical restenosis rates, which have found higher restenosis rates in the NIR compared with the S7 stent design. Therefore, the testing methodology outlined here is proposed as a pre-clinical testing tool, which could be used to compare and contrast existing stent designs and to develop novel stent designs.  相似文献   

10.
Balloon-expandable and self-expandable stents are the two types of coronary stents available. Basically, they differ in the modality of expansion.The present study analyses the stress state induced on the vascular wall, by the expansion of balloon- and self-expandable stents, using the finite element method. Indeed, modified mechanical stress state is in part responsible in the restenosis process. The balloon-expandable stents herein investigated are assumed to be made of stainless steel, while the self-expandable stents are made of a shape memory alloy. The effects of the severity of the coronary stenosis, the atherosclerotic plaque stiffness and the stent design are investigated. Comparing the self-expandable stent with the balloon-expandable one, the former induces fewer stresses and lower damage to the vessel, but, on the other hand, its lower stiffness induces a lower capability to restore vasal lumen and to contrast arterial elastic recoil.  相似文献   

11.
Intravascular stents are small tube-like structures expanded into stenotic arteries to restore blood flow perfusion to the downstream tissues. The stent is mounted on a balloon catheter and delivered to the site of blockage. When the balloon is inflated, the stent expands and is pressed against the inner wall of the coronary artery. After the balloon is deflated and removed, the stent remains in place, keeping the artery open. Hence, the stent expansion defines the effectiveness of the surgical procedure: it depends on the stent geometry, it includes large displacements and deformations and material non-linearity.In this paper, the finite element method is applied (i) to understand the effects of different geometrical parameters (thickness, metal-to-artery surface ratio, longitudinal and radial cut lengths) of a typical diamond-shaped coronary stent on the device mechanical performance, (ii) to compare the response of different actual stent models when loaded by internal pressure and (iii) to collect suggestions for optimizing the device shape and performance.The stent expansion and partial recoil under balloon inflation and deflation were simulated. Results showed the influence of the geometry on the stent behavior: a stent with a low metal-to-artery surface ratio has a higher radial and longitudinal recoil, but a lower dogboning. The thickness influences the stent performance in terms of foreshortening, longitudinal recoil and dogboning.In conclusion, a finite element analysis similar to the one herewith proposed could help in designing new stents or analyzing actual stents to ensure ideal expansion and structural integrity, substituting in vitro experiments often difficult and unpractical.  相似文献   

12.
Stent can cause flow disturbances on the endothelium and compliance mismatch and increased stress on the vessel wall. These effects can cause low wall shear stress (WSS), high wall shear stress gradient (WSSG), oscillatory shear index (OSI), and circumferential wall stress (CWS), which may promote neointimal hyperplasia (IH). The hypothesis is that stent-induced abnormal fluid and solid mechanics contribute to IH. To vary the range of WSS, WSSG, OSI, and CWS, we intentionally mismatched the size of stents to that of the vessel lumen. Stents were implanted in coronary arteries of 10 swine. Intravascular ultrasound (IVUS) was used to size the coronary arteries and stents. After 4 wk of stent implantation, IVUS was performed again to determine the extent of IH. In conjunction, computational models of actual stents, the artery, and non-Newtonian blood were created in a computer simulation to yield the distribution of WSS, WSSG, OSI, and CWS in the stented vessel wall. An inverse relation (R(2) = 0.59, P < 0.005) between WSS and IH was found based on a linear regression analysis. Linear relations between WSSG, OSI, and IH were observed (R(2) = 0.48 and 0.50, respectively, P < 0.005). A linear relation (R(2) = 0.58, P < 0.005) between CWS and IH was also found. More statistically significant linear relations between the ratio of CWS to WSS (CWS/WSS), the products CWS × WSSG and CWS × OSI, and IH were observed (R(2) = 0.67, 0.54, and 0.56, respectively, P < 0.005), suggesting that both fluid and solid mechanics influence the extent of IH. Stents create endothelial flow disturbances and intramural wall stress concentrations, which correlate with the extent of IH formation, and these effects were exaggerated with mismatch of stent/vessel size. These findings reveal the importance of reliable vessel and stent sizing to improve the mechanics on the vessel wall and minimize IH.  相似文献   

13.
Restenosis limits the effectiveness of stents, but the mechanisms responsible for this phenomenon remain incompletely described. Stent geometry and expansion during deployment produce alterations in vascular anatomy that may adversely affect wall shear stress (WSS) and correlate with neointimal hyperplasia. These considerations have been neglected in previous computational fluid dynamics models of stent hemodynamics. Thus we tested the hypothesis that deployment diameter and stent strut properties (e.g., number, width, and thickness) influence indexes of WSS predicted with three-dimensional computational fluid dynamics. Simulations were based on canine coronary artery diameter measurements. Stent-to-artery ratios of 1.1 or 1.2:1 were modeled, and computational vessels containing four or eight struts of two widths (0.197 or 0.329 mm) and two thicknesses (0.096 or 0.056 mm) subjected to an inlet velocity of 0.105 m/s were examined. WSS and spatial WSS gradients were calculated and expressed as a percentage of the stent and vessel area. Reducing strut thickness caused regions subjected to low WSS (<5 dyn/cm(2)) to decrease by approximately 87%. Increasing the number of struts produced a 2.75-fold increase in exposure to low WSS. Reducing strut width also caused a modest increase in the area of the vessel experiencing low WSS. Use of a 1.2:1 deployment ratio increased exposure to low WSS by 12-fold compared with stents implanted in a 1.1:1 stent-to-vessel ratio. Thinner struts caused a modest reduction in the area of the vessel subjected to elevated WSS gradients, but values were similar for the other simulations. The results suggest that stent designs that reduce strut number and thickness are less likely to subject the vessel to distributions of WSS associated with neointimal hyperplasia.  相似文献   

14.
Coronary artery disease can be treated by implanting a stent into the blocked region of an artery, thus enabling blood perfusion to distal vessels. Minimally invasive procedures of this nature often result in damage to the arterial tissue culminating in the re-blocking of the vessel. In an effort to alleviate this phenomenon, known as restenosis, drug eluting stents were developed. They are similar in composition to a bare metal stent but encompass a coating with therapeutic agents designed to reduce the overly aggressive healing response that contributes to restenosis. There are many variables that can influence the effectiveness of these therapeutic drugs being transported from the stent coating to and within the artery wall, many of which have been analysed and documented by researchers. However, the physical deformation of the artery substructure due to stent expansion, and its influence on a drugs ability to diffuse evenly within the artery wall have been lacking in published work to date. The paper highlights previous approaches adopted by researchers and proposes the addition of porous artery wall deformation to increase model accuracy.  相似文献   

15.

Percutaneous coronary intervention (PCI) has become the primary treatment for patients with coronary heart disease because of its minimally invasive nature and high efficiency. Anatomical studies have shown that most coronary vessels gradually shrink, and the vessels gradually become thinner from the proximal to the distal end. In this paper, the effects of different stent expansion methods on the mechanical and hemodynamic behaviors of coronary vessels and stents were studied. To perform a structural-mechanical analysis of stent implantation, the coronary vessels with branching vessels and the coronary vessels with large bending curvature are selected. The two characteristic structures are implanted in equal diameter expansion mode and conical expansion mode, and the stress and mechanical behaviors of the coronary vessels and stents are analyzed. The results of the structural-mechanical analysis showed that the mechanical behaviors and fatigue performance of the cobalt-chromium alloy stent were good, and the different expansion modes of the stent had little effect on the fatigue performance of the stent. However, the equal diameter expansion mode increased distal coronary artery stress and the risk of vascular injury. The computational fluid dynamics analysis results showed that different stent expansion methods had varied effects on coronary vessel hemodynamics and that the wall shear stress distribution of conical stent expansion is more uniform compared with equal diameter expansion. Additionally, the vortex phenomenon is not apparent, the blood flow velocity is slightly increased, the hydrodynamic environment is more reasonable, and the risk of coronary artery injury is reduced.

  相似文献   

16.
Coronary stents are tubular type scaffolds that are deployed, using an inflatable balloon on a catheter, most commonly to recover the lumen size of narrowed (diseased) arterial segments. A common differentiating factor between the numerous stents used in clinical practice today is their geometric design. An ideal stent should have high radial strength to provide good arterial support post-expansion, have high flexibility for easy manoeuvrability during deployment, cause minimal injury to the artery when being expanded and, for drug eluting stents, should provide adequate drug in the arterial tissue. Often, with any stent design, these objectives are in competition such that improvement in one objective is a result of trade-off in others. This study proposes a technique to parameterize stent geometry, by varying the shape of circumferential rings and the links, and assess performance by modelling the processes of balloon expansion and drug diffusion. Finite element analysis is used to expand each stent (through balloon inflation) into contact with a representative diseased coronary artery model, followed by a drug release simulation. Also, a separate model is constructed to measure stent flexibility. Since the computational simulation time for each design is very high (approximately 24?h), a Gaussian process modelling approach is used to analyse the design space corresponding to the proposed parameterization. Four objectives to assess recoil, stress distribution, drug distribution and flexibility are set up to perform optimization studies. In particular, single objective constrained optimization problems are set up to improve the design relative to the baseline geometry—i.e. to improve one objective without compromising the others. Improvements of 8, 6 and 15% are obtained individually for stress, drug and flexibility metrics, respectively. The relative influence of the design features on each objective is quantified in terms of main effects, thereby suggesting the design features which could be altered to improve stent performance. In particular, it is shown that large values of strut width combined with smaller axial lengths of circumferential rings are optimal in terms of minimizing average stresses and maximizing drug delivery. Furthermore, it is shown that a larger amplitude of the links with minimum curved regions is desirable for improved flexibility, average stresses and drug delivery.  相似文献   

17.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were 'treated' with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

18.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were ‘treated’ with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

19.
张小卉 《植物研究》2011,(3):277-283
运用扫描电子显微镜法(SEM)对木通科(Lardizabalaceae)4属植物茎的次生木质部导管分子进行观察,结果表明:(1)端壁均具有单穿孔板;(2)串果藤属的导管分子具有丰富的穿孔板类型,包括网状、梯状、单穿孔及过渡类型,穿孔具有网状、丝状、片状的纹孔膜残余;大血藤属和八月瓜属的导管分子具有相似的特征,端壁具有梯状、单穿孔及梯—单混合穿孔板;野木瓜属只具有单穿孔板;(3)侧壁上具有穿孔板,多为梯状或梯—网混合类型(除了野木瓜属);(4)野木瓜属的导管侧壁具有独特的螺旋状加厚。各属导管的不同特征为木通科的系统演化提供比较可靠的依据。  相似文献   

20.
Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号