首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
《Developmental biology》1986,114(2):492-503
The addition of dibutyryl cyclic AMP (dbcAMP) to aggregate cultures of F9 cells in medium containing retinoic acid (RA) directs the pathway of differentiation into parietal endoderm instead of visceral endoderm. We examined the levels of some of the markers that characterize the two pathways and studied the time of commitment of cells to either direction of differentiation by using immunoprecipitation and enzyme-linked immunosorbent assays (ELISA). For either pathway, the levels and patterns of laminin, type IV collagen, and fibronectin are the same on the first day of differentiation, characterized by slightly decreased levels of laminin and type IV collagen synthesis and an increased level of fibronectin synthesis. These levels reverse on the second day of culture when the pathways diverge markedly. The differentiation pathway, however, can be redirected into the alternate one; parietal endoderm cells become committed after 3 days, whereas visceral endoderm cells are able to change into parietal endoderm cells at any time. Thus, α-fetoprotein (AFP)-producing F9 embryoid bodies switched to dbcAMP-containing medium lose the capacity to synthesize AFP and start to express genes characteristic of parietal endoderm. Our results indicate that at least some visceral endoderm cells may redifferentiate into parietal endoderm cells. These phenomena thus mimic features of endoderm differentiation in the mouse embryo.  相似文献   

6.
Previous studies with tissue recombination experiments demonstrated that the splanchnic mesenchymes, including hepatic, pulmonary and stomach mesenchymes can support hepatocyte differentiation from the hepatic endoderm in 9.5-day mouse embryos. This phenomenon corresponds to the second hepatic induction. The present study was undertaken to determine whether direct cell-cell contacts between the hepatic endoderm and mesenchyme are required for hepatocyte differentiation, using transfilter experiments in which membrane filters with various pore sizes were inserted between the endoderm and the hepatocyte-inducing mesenchyme (the chick lung mesenchyme). Hepatocyte differentiation occurred even when the direct cell-cell contacts between the hepatic endoderm and the mesenchyme were absent, suggesting that humoral factors may work in this interaction. However, growth of hepatocytes was most prominent in the transfilter experiments with filters having pore sizes of 0.2 and 0.8 mum, which permitted mesenchymal cells or their cell processes to penetrate to the side of the endoderm. These results suggest that two types of tissue interactions, including humoral mesenchymal factors and very local tissue interactions such as direct cell-cell contacts, may be involved in the second step of hepatic induction.  相似文献   

7.
Retinoic acid (RA) induces F9 cells, the mouse teratocarcinoma cells, to differentiate into primitive endoderm and further into visceral and parietal endoderm depending on the culture conditions. To elucidate the instructive mechanisms involved in the differentiation steps we investigated the effects of Wnt-signaling members, Wnt3a and β-catenin, on the differentiation of F9 cells and β-catenin-deficient F9 cells (βT cells). RA up-regulated the expression of differentiation markers for primitive, visceral and parietal endoderm in F9 cells but not for visceral endoderm in βT cells. Wnt3a or leukemia inhibitory factor (LIF) inhibited the RA-induced differentiation in F9 cells. LIF but not Wnt3a could inhibit differentiation in βT cells. RA evoked ZO-1α+ signals at cell-to-cell contacts in F9 cells in a Wnt3a sensitive manner. The results suggest that Wnt3a inhibits differentiation into endoderm through a pathway involving β-catenin, and β-catenin might be necessary in the process leading from primitive to visceral endoderm in F9 cells.  相似文献   

8.
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.  相似文献   

9.
Notch/Delta expression in the developing mouse lung   总被引:8,自引:0,他引:8  
  相似文献   

10.
Mouse F9 cells differentiate into primitive endoderm when treated with retinoic acid (RA) and into parietal endoderm in response to RA and dibutyryl (db-) cAMP. G protein signaling either blocks or mimics RA-induced differentiation, the latter signaling through the Wnt-beta-catenin pathway. In our study, we found that a constitutively active Galpha13 mutant induces F9 cells to differentiate into parietal endoderm in the absence of exogenous agents. Galpha13 expression and subsequent differentiation are accompanied by beta-catenin translocation to the nucleus. Differentiation and changes in cell morphology are supported by rearrangements to the F-actin cytoskeleton. ERM (ezrin-radixin-moesin) proteins, known to link F-actin to transmembrane receptors, are also redistributed during differentiation. Furthermore, morpholino antisense and shRNA approaches show that moesin expression is essential since its knockdown leads to altered F-actin distribution and subsequent apoptosis. Moesin-depleted cells, however, remain attached to the substrate when Galpha13 is constitutively expressed, but they do not differentiate into extraembryonic endoderm. Our study demonstrates a link between Galpha13 signaling that regulates differentiation of F9 cells through primitive to parietal endoderm and a moesin requirement for cell survival.  相似文献   

11.
Human embryonic stem cells have the potential to differentiate into all human cell types and therefore hold a great therapeutic promise. Differentiation into the embryonic endoderm and its derivatives is of special interest since it can provide a cure for severe widespread clinical conditions such as diabetes and hepatic failure. In this work we established a unique experimental outline that enables the study of early human endoderm development and can help improve and create new differentiation protocols. To this end we started with mesendoderm cells and separated them into early endoderm and mesoderm progenitor cells using CXCR4 and PDGFRA cell surface markers. We molecularly characterized the different lineages, and demonstrated the importance of the TGFβ pathway in definitive endoderm initiation. The endoderm progenitor cells were then purified creating an endodermal differentiation niche that is not affected by other cell populations. We followed the differentiation of these cells at different time points, and demonstrated an up regulation of genes indicative to differentiation into both foregut and hindgut. Surprisingly, upon continued culture, there was significant down regulation of the hepatic gene signature. This down regulation could be rescued with FGF2 treatment demonstrating its importance in hepatic cell maintenance. In conclusion, we suggest that isolating endoderm progenitor cells is crucial for the analysis of their fate, and enables the identification of factors involved in their differentiation and maintenance.  相似文献   

12.
This study investigates the establishment of alternative cell fates during embryoid body differentiation when ES cells diverge into two epithelia simulating the pre-gastrulation endoderm and ectoderm. We report that endoderm differentiation and endoderm-specific gene expression, such as expression of laminin 1 subunits, is controlled by GATA6 induced by FGF. Subsequently, differentiation of the non-polar primitive ectoderm into columnar epithelium of the epiblast is induced by laminin 1. Using GATA6 transformed Lamc1-null endoderm-like cells, we demonstrate that laminin 1 exhibited by the basement membrane induces epiblast differentiation and cavitation by cell-to-matrix/matrix-to-cell interactions that are similar to the in vivo crosstalk in the early embryo. Pharmacological and dominant-negative inhibitors reveal that the cell shape change of epiblast differentiation requires ROCK, the Rho kinase. We also show that pluripotent ES cells display laminin receptors; hence, these stem cells may serve as target for columnar ectoderm differentiation. Laminin is not bound by endoderm derivatives; therefore, the sub-endodermal basement membrane is anchored selectively to the ectoderm, conveying polarity to its assembly and to the differentiation induced by it. Unique to these interactions is their flow through two cell layers connected by laminin 1 and their involvement in the differentiation of two epithelia from the same stem cell pool: one into endoderm controlled by FGF and GATA6; and the other into epiblast regulated by laminin 1 and Rho kinase.  相似文献   

13.
Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.  相似文献   

14.
It has been suggested that cell position regulates endodermal differentiation in mouse embryo inner cell masses and in aggregates of embryonal carcinoma (EC) cells. This hypothesis states that cells at the interface between the cell mass and blastocoel fluid or culture medium differentiate into endoderm, whereas internally located cells follow alternative developmental pathways. To test the cell position hypothesis, pluripotent PSA-1 cells were aggregated with hypoxanthine phosphoribosyltransferase-deficient, parietal-like, endodermal cells. The resulting aggregates consisted of cores of PSA-1 cells surrounded by endodermal cells. Autoradiography was used to distinguish between endodermal cells that were the products of EC cell differentiation and the exogenous endoderm. Alkaline phosphatase staining was used to distinguish EC cells from endodermal cells. As predicted by the cell position hypothesis, the PSA-1 EC cells, all of which were internally located, did not differentiate into endodermal cells. Nonspecific inhibition of differentiation did not account for the lack of PSA-1-derived endoderm since the PSA-1 cells in such aggregates did differentiate into columnar ectodermal-like cells. Similar experiments were also conducted with F9 cells. In this case, aggregation cultures contained retinoic acid to induce F9 cells to differentiate into visceral endoderm. In cultures containing F9 cells surrounded by parietal-like endodermal cells, no F9-derived endoderm was detected either autoradiographically or by assaying for alpha-fetoprotein production, a visceral endoderm marker. Thus, retinoic acid-induced endodermal differentiation was also regulated by cell position. Collectively, the above results provide strong evidence for the hypothesis that cell position regulates endodermal differentiation in aggregates of EC cells.  相似文献   

15.
Embryonic stem (ES) cells, derived from the inner cell mass of blastocyst can differentiate into multiple cell lineages. In this study, we examined the possible involvement of Ras in ES cell differentiation. We found that Ras was activated upon formation of embryoid bodies (EBs), an initial step in ES cell differentiation. When expressed during EB differentiation, a dominant-negative mutant of Ras suppressed induction of marker genes for extraembryonic endoderm differentiation, including GATA-4, GATA-6, alpha-fetoprotein, and hepatocyte nuclear factor 3beta, while an activated mutant promoted their induction. Expression of a Ras mutant that selectively activates the Raf/MEK/Erk pathway also enhanced induction of extraembryonic endoderm markers, and treatment with a MEK inhibitor resulted in their decreased expression. In addition, Ras stimulated downregulation of Nanog, a suppressor of endoderm differentiation in ES cells. These data suggest that Ras activation during EB differentiation plays a crucial role in initiation of extraembryonic endoderm differentiation.  相似文献   

16.
The differentiation of the endoderms of duodenal, jejunal and ileal segments of the small intestine of 6 day old chick embryos cultured in recombination with the gizzard mesenchyme of 6 day chick embryos was examined. Only the duodenal endoderm differentiated in a mesenchyme-dependent fashion into gizzard-like mucous epithelium forming tubular glands that expressed no sucrase-antigen, while jejunal and ileal endoderms tended to become the sucrase-antigen-positive epithelium most likely according to their developmental fates. The analysis on the differentiation of the duodenal and gizzard endoderms in the presence of various digestive-tract mesenchymes confirmed that the duodenal endoderm had the tendency to differentiate into intestine-type and was different from the gizzard endoderm, which showed the differentiation tendency into gizzard-type. Thus, among the segments of small intestine, only the endoderm of duodenum that was situated next to the gizzard was found to have an ability to respond to the inductive influence of the gizzard mesenchyme and to change its developmental fate.  相似文献   

17.
Mouse epiblast stem cells (EpiSCs) display temporal differences in the upregulation of Mixl1 expression during the initial steps of in vitro differentiation, which can be correlated with their propensity for endoderm differentiation. EpiSCs that upregulated Mixl1 rapidly during differentiation responded robustly to both Activin A and Nodal in generating foregut endoderm and precursors of pancreatic and hepatic tissues. By contrast, EpiSCs that delayed Mixl1 upregulation responded less effectively to Nodal and showed an overall suboptimal outcome of directed differentiation. The enhancement in endoderm potency in Mixl1-early cells may be accounted for by a rapid exit from the progenitor state and the efficient response to the induction of differentiation by Nodal. EpiSCs that readily differentiate into the endoderm cells are marked by a distinctive expression fingerprint of transforming growth factor (TGF)-β signalling pathway genes and genes related to the endoderm lineage. Nodal appears to elicit responses that are associated with transition to a mesenchymal phenotype, whereas Activin A promotes gene expression associated with maintenance of an epithelial phenotype. We postulate that the formation of definitive endoderm (DE) in embryoid bodies follows a similar process to germ layer formation from the epiblast, requiring an initial de-epithelialization event and subsequent re-epithelialization. Our results show that priming EpiSCs with the appropriate form of TGF-β signalling at the formative phase of endoderm differentiation impacts on the further progression into mature DE-derived lineages, and that this is influenced by the initial characteristics of the cell population. Our study also highlights that Activin A, which is commonly used as an in vitro surrogate for Nodal in differentiation protocols, does not elicit the same downstream effects as Nodal, and therefore may not effectively mimic events that take place in the mouse embryo.  相似文献   

18.
Monkey embryonic stem (ES) cells share similar characteristics to human ES cells and provide a primate model of allotransplantation, which allows to validate efficacy and safety of cell transplantation therapy in regenerative medicine. Bone morphogenetic protein 4 (BMP4) is known to promote trophoblast differentiation in human ES cells in contrast to mouse ES cells where BMP4 synergistically maintains self-renewal with leukemia inhibitory factor (LIF), which represents a significant difference in signal transduction of self-renewal and differentiation between murine and human ES cells. As the similarity of the differentiation mechanism between monkey and human ES cells is of critical importance for their use as a primate model system, we investigated whether BMP4 induces trophoblast differentiation in monkey ES cells. Interestingly, BMP4 did not induce trophoblast differentiation, but instead induced primitive endoderm differentiation. Prominent downregulation of Sox2, which plays a pivotal role not only in pluripotency but also placenta development, was observed in cells treated with BMP4. In addition, upregulation of Hand1, Cdx2, and chorionic gonadotropin beta (CG-beta), which are markers of trophoblast, was not observed. In contrast, BMP4 induced significant upregulation of Gata6, Gata4, and LamininB1, suggesting differentiation into the primitive endoderm, visceral endoderm, and parietal endoderm, respectively. The threshold of BMP4 activity was estimated as about 10 ng/mL. These findings suggest that BMP4 induced differentiation into the primitive endoderm lineage but not into trophoblast in monkey ES cells.  相似文献   

19.
Early mouse endoderm is patterned by soluble factors from adjacent germ layers   总被引:15,自引:0,他引:15  
Endoderm that forms the respiratory and digestive tracts is a sheet of approximately 500-1000 cells around the distal cup of an E7.5 mouse embryo. Within 2 days, endoderm folds into a primitive gut tube from which numerous organs will bud. To characterize the signals involved in the developmental specification of this early endoderm, we have employed an in vitro assay using germ layer explants and show that adjacent germ layers provide soluble, temporally specific signals that induce organ-specific gene expression in endoderm. Furthermore, we show that FGF4 expressed in primitive streak-mesoderm can induce the differentiation of endoderm in a concentration-dependent manner. We conclude that the differentiation of gastrulation-stage endoderm is directed by adjacent mesoderm and ectoderm, one of the earliest reported patterning events in formation of the vertebrate gut tube.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号