首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeatedly and consistently measuring the mechanical properties of tendon is important but presents a challenge. Preconditioning can provide tendons with a consistent loading history to make comparisons between groups from mechanical testing experiments. However, the specific mechanisms occurring during preconditioning are unknown. Previous studies have suggested that microstructural changes, such as collagen fiber re-alignment, may be a result of preconditioning. Local collagen fiber re-alignment is quantified throughout tensile mechanical testing using a testing system integrated with a polarized light setup, consisting of a backlight, 90 deg-offset rotating polarizer sheets on each side of the test sample, and a digital camera, in a rat supraspinatus tendon model, and corresponding mechanical properties are measured. Local circular variance values are compared throughout the mechanical test to determine if and where collagen fiber re-alignment occurred. The inhomogeneity of the tendon is examined by comparing local circular variance values, optical moduli and optical transition strain values. Although the largest amount of collagen fiber re-alignment was found during preconditioning, significant re-alignment was also demonstrated in the toe and linear regions of the mechanical test. No significant changes in re-alignment were seen during stress relaxation. The insertion site of the supraspinatus tendon demonstrated a lower linear modulus and a more disorganized collagen fiber distribution throughout all mechanical testing points compared to the tendon midsubstance. This study identified a correlation between collagen fiber re-alignment and preconditioning and suggests that collagen fiber re-alignment may be a potential mechanism of preconditioning and merits further investigation. In particular, the conditions necessary for collagen fibers to re-orient away from the direction of loading and the dependency of collagen reorganization on its initial distribution must be examined.  相似文献   

2.
The contribution of glycosaminoglycans (GAGs) to the biological and mechanical functions of biological tissue has emerged as an important area of research. GAGs provide structural basis for the organization and assembly of extracellular matrix (ECM). The mechanics of tissue with low GAG content can be indirectly affected by the interaction of GAGs with collagen fibers, which have long been known to be one of the primary contributors to soft tissue mechanics. Our earlier study showed that enzymatic GAG depletion results in straighter collagen fibers that are recruited at lower levels of stretch, and a corresponding shift in earlier arterial stiffening (Mattson et al., 2016). In this study, the effect of GAGs on collagen fiber recruitment was studied through a structure-based constitutive model. The model incorporates structural information, such as fiber orientation distribution, content, and recruitment of medial elastin, medial collagen, and adventitial collagen fibers. The model was first used to study planar biaxial tensile stress-stretch behavior of porcine descending thoracic aorta. Changes in elastin and collagen fiber orientation distribution, and collagen fiber recruitment were then incorporated into the model in order to predict the stress-stretch behavior of GAG depleted tissue. Our study shows that incorporating early collagen fiber recruitment into the model predicts the stress-stretch response of GAG depleted tissue reasonably well (rms = 0.141); considering further changes of fiber orientation distribution does not improve the predicting capability (rms = 0.149). Our study suggests an important role of GAGs in arterial mechanics that should be considered in developing constitutive models.  相似文献   

3.
An in vitro model system was developed to study structure-function relationships and the development of structural and mechanical anisotropy in collagenous tissues. Fibroblast-populated collagen gels were constrained either biaxially or uniaxially. Gel remodeling, biaxial mechanical properties, and collagen orientation were determined after 72 h of culture. Collagen gels contracted spontaneously in the unconstrained direction, uniaxial mechanical constraints produced structural anisotropy, and this structural anisotropy was associated with mechanical anisotropy. Cardiac and tendon fibroblasts were compared to test the hypothesis that tendon fibroblasts should generate greater anisotropy in vitro. However, no differences were seen in either structure or mechanics of collagen gels populated with these two cell types, or between fibroblast populated gels and acellular gels. This study demonstrates our ability to control and measure the development of structural and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system. While imposed constraints were required for the development of anisotropy in this system, active remodeling of the gel by fibroblasts was not. This model system will provide a basis for investigating structure-function relationships in engineered constructs and for studying mechanisms underlying the development of anisotropy in collagenous tissues.  相似文献   

4.
BackgroundCollagen fiber re-alignment and uncrimping are two postulated mechanisms of tendon structural response to load. Recent studies have examined structural changes in response to mechanical testing in a postnatal development mouse supraspinatus tendon model (SST), however, those changes in the mature mouse have not been characterized. The objective of this study was to characterize collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse SST.Method of approachA tensile mechanical testing set-up integrated with a polarized light system was utilized for alignment and mechanical analysis. Local collagen fiber crimp frequency was quantified immediately following the designated loading protocol using a traditional tensile set up and a flash-freezing method. The effect of number of preconditioning cycles on collagen fiber re-alignment, crimp frequency and mechanical properties in midsubstance and insertion site locations were examined.ResultsDecreases in collagen fiber crimp frequency were identified at the toe-region of the mechanical test at both locations. The insertion site re-aligned throughout the entire test, while the midsubstance re-aligned during preconditioning and the test's linear-region. The insertion site demonstrated a more disorganized collagen fiber distribution, lower mechanical properties and a higher cross-sectional area compared to the midsubstance location.ConclusionsLocal collagen fiber re-alignment, crimp behavior and mechanical properties were characterized in a mature mouse SST model. The insertion site and midsubstance respond differently to mechanical load and have different mechanisms of structural response. Additionally, results support that collagen fiber crimp is a physiologic phenomenon that may explain the mechanical test toe-region.  相似文献   

5.
A recent study (Lake et al., 2009); reported the properties of human supraspinatus tendon (SST) tested along the predominant fiber direction. The SST was found to have a relatively disperse distribution of collagen fibers, which may represent an adaptation to multiaxial loads imposed by the complex loading environment of the rotator cuff. However, the multiaxial mechanical properties of human SST remain unknown. The objective of this study, therefore, was to evaluate the mechanical properties, fiber alignment, change in alignment with applied load, and structure–function relationships of SST in transverse testing. Samples from six SST locations were tested in uniaxial tension with samples oriented transverse to the tendon long-axis. Polarized light imaging was used to quantify collagen fiber alignment and change in alignment under applied load. The mechanical properties of samples taken near the tendon–bone insertion were much greater on the bursal surface compared to the joint surface (e.g., bursal moduli 15–30 times greater than joint; p<0.001). In fact, the transverse moduli values of the bursal samples were very similar to values obtained from samples tested along the tendon long-axis (Lake et al., 2009). This key and unexpected finding suggests planar mechanical isotropy for bursal surface samples near the insertion, which may be due to complex in vivo loading. Organizationally, fiber distributions became less aligned along the tendon long-axis in the toe-region of the stress–strain response. Alignment changes occurred to a slightly lesser degree in the linear-region, suggesting that movement of collagen fibers may play a role in mechanical nonlinearity. Transverse mechanical properties were significantly correlated with fiber alignment (e.g., for linear-region modulus rs=0.74, p<0.0001), demonstrating strong structure–function relationships. These results greatly enhance current understanding of the properties of human SST and provide clinicians and scientists with vital information in attempting to treat or replace this complex tissue.  相似文献   

6.
The annulus fibrosus (AF) of the intervertebral disk undergoes large and multidirectional stresses and strains. Uniaxial tensile tests are limited for measuring AF material properties, because freely contracting edges can prevent fiber stretch and are not representative of in situ boundary conditions. The objectives of this study were to measure human AF biaxial tensile mechanics and to apply and validate a constitutive model to determine material properties. Biaxial tensile tests were performed on samples oriented along the circumferential–axial and the radial–axial directions. Data were fit to a structurally motivated anisotropic hyperelastic model composed of isotropic extra-fibrillar matrix, nonlinear fibers, and fiber–matrix interactions (FMI) normal to the fibers. The validated model was used to simulate shear and uniaxial tensile behavior, to investigate AF structure–function, and to quantify the effect of degeneration. The biaxial stress–strain response was described well by the model (R 2?>?0.9). The model showed that the parameters for fiber nonlinearity and the normal FMI correlated with degeneration, resulting in an elongated toe-region and lower stiffness with degeneration. The model simulations in shear and uniaxial tension successfully matched previously published circumferential direction Young’s modulus, provided an explanation for the low values in previously published axial direction Young’s modulus, and was able to simulate shear mechanics. The normal FMI were important contributors to stress and changed with degeneration, therefore, their microstructural and compositional source should be investigated. Finally, the biaxial mechanical data and constitutive model can be incorporated into a disk finite element model to provide improved quantification of disk mechanics.  相似文献   

7.
Structural three-dimensional constitutive law for the passive myocardium   总被引:2,自引:0,他引:2  
A three-dimensional constitutive law is proposed for the myocardium. Its formulation is based on a structural approach in which the total strain energy of the tissue is the sum of the strain energies of its constituents: the muscle fibers, the collagen fibers and the fluid matrix which embeds them. The ensuing material law expresses the specific structural and mechanical properties of the tissue, namely, the spatial orientation of the comprising fibers, their waviness in the unstressed state and their stress-strain behavior when stretched. Having assumed specific functional forms for the distribution of the fibers spatial orientation and waviness, the results of biaxial mechanical tests serve for the estimation of the material constants appearing in the constitutive equations. A very good fit is obtained between the measured and the calculated stresses, indicating the suitability of the proposed model for describing the mechanical behavior of the passive myocardium. Moreover, the results provide general conclusions concerning the structural basis for the tissue overall mechanical properties, the main of which is that the collagen matrix, though comprising a relatively small fraction of the whole tissue volume, is the dominant component accounting for its stiffness.  相似文献   

8.
The objective of this study was to develop a nonlinear and anisotropic three-dimensional mathematical model of tendon behavior in which the structural components of fibers, matrix, and fiber-matrix interactions are explicitly incorporated and to use this model to infer the contributions of these structures to tendon mechanical behavior. We hypothesized that this model would show that: (i) tendon mechanical behavior is not solely governed by the isotropic matrix and fiber stretch, but is also influenced by fiber-matrix interactions; and (ii) shear fiber-matrix interaction terms will better describe tendon mechanical behavior than bulk fiber-matrix interaction terms. Model versions that did and did not include fiber-matrix interaction terms were applied to experimental tendon stress-strain data in longitudinal and transverse orientations, and the R2 goodness-of-fit was evaluated. This study showed that models that included fiber-matrix interaction terms improved the fit to longitudinal data (R2(toe) = 0.88, R2(Lin) = 0.94) over models that only included isotropic matrix and fiber stretch terms (R2(Toe) = 0.36, R2(Lin) = 0.84). Shear fiber-matrix interaction terms proved to be responsible for the best fit to data and to contribute to stress-strain nonlinearity. The mathematical model of tendon behavior developed in this study showed that fiber-matrix interactions are an important contributor to tendon behavior The more complete characterization of mechanical behavior afforded by this mathematical model can lead to an improved understanding of structure-function relationships in soft tissues and, ultimately, to the development of tissue-engineered therapies for injury or degeneration.  相似文献   

9.
The role of extracellular elements on the mechanical properties of skeletal muscles is unknown. Merosin is an essential extracellular matrix protein that forms a mechanical junction between the sarcolemma and collagen. Therefore, it is possible that merosin plays a role in force transmission between muscle fibers and collagen. We hypothesized that deficiency in merosin may alter passive muscle stiffness, viscoelastic properties, and contractile muscle force in skeletal muscles. We used the dy/dy mouse, a merosin-deficient mouse model, to examine changes in passive and active muscle mechanics. After mice were anesthetized and the diaphragm or the biceps femoris hindlimb muscle was excised, passive length-tension relationships, stress-relaxation curves, or isometric contractile properties were determined with an in vitro biaxial mechanical testing apparatus. Compared with controls, extensibility was smaller in the muscle fiber direction and the transverse fiber direction of the mutant mice. The relaxed elastic modulus was smaller in merosin-deficient diaphragms compared with controls. Interestingly, maximal muscle tetanic stress was depressed in muscles from the mutant mice during uniaxial loading but not during biaxial loading. However, presence of transverse passive stretch increases maximal contractile stress in both the mutant and normal mice. Our data suggest that merosin contributes to muscle passive stiffness, viscoelasticity, and contractility and that the mechanism by which force is transmitted between adjacent myofibers via merosin possibly in shear.  相似文献   

10.
11.
To date, there are no constitutive models for either the natural or bioprosthetic aortic valve (AV), in part due to experimental complications related to the AV's small size and heterogeneous fibrous structure. In this study, we developed specialized biaxial testing techniques for the AV cusp, including a method to determine the local structure-strain relationship to assess the effects of boundary tethering forces. Natural and glutaraldehyde (GL) treated cusps were subjected to an extensive biaxial testing protocol in which the ratios of the axial tensions were held at constant values. Results indicated that the local fiber architecture clearly dominated cuspal deformation, and that the tethering effects at the specimen boundaries were negligible. Due to unique aspects of cuspal fiber architecture, the most uniform region of deformation was found at the lower portion as opposed to the center of the cuspal specimen. In general, the circumferential strains were much smaller than the radial strains, indicating a profound degree of mechanical anisotropy, and that natural cusps were significantly more extensible than the GL treated cusps. Strong mechanical coupling between biaxial stretch axes produced negative circumferential strains under equibiaxial tension. Further, the large radial strains observed could not be explained by uncrimping of the collagen fibers, but may be due to large rotations of the highly aligned, circumferential-oriented collagen fibers in the fibrosa. In conclusion, this study provides new insights into the AV cusp's structure-function relationship in addition to requisite data for constitutive modeling.  相似文献   

12.
A constitutive law that includes three analytical expressions was recently proposed to approximate the low, physiologic, and high-stress parts of the aortic stress-strain relation in uniaxial tension, consistent with the biphasic nature of the aortic wall under passive conditions. This consistency, and the fact that previous phenomenological uniaxial laws have only indirectly been related to vessel wall structure, motivates the investigation of the structural basis underlying the newly proposed three-part constitutive law. For this purpose, longitudinally oriented aortic strips were fixed in Karnovsky's solution, while subjected to various pre-selected levels of uniaxial tensile stress. Light microscopy examination disclosed that the elastic lamellae gradually unfolded at low and were almost straight at physiologic and high stresses, while collagen fibers reoriented in the longitudinal axis at low, started uncoiling at physiologic, and straightened massively at high stresses. In the circumferential sections, the elastic lamellae and the circumferentially distributed collagen bundles remained wavy at all levels of longitudinally applied stress. These microstructural changes suggest that elastin becomes load-bearing at low, and collagen at physiologic but mostly at high stresses, so that the first and third parts of the constitutive law are in turn due to the presence of elastin and collagen alone, and the second due to both elastin and collagen. The structural basis of this constitutive law allows physically significant interpretation of its parameters, offering insight into how the aortic microstructure determines the macromechanical response.  相似文献   

13.
Improving our understanding of the design requirements of biologically derived collagenous scaffolds is necessary for their effective use in tissue reconstruction. In the present study, the collagen fiber kinematics of small intestinal submucosa (SIS) was quantified using small angle light scattering (SALS) while the specimen was subjected to prescribed uniaxial or biaxial strain paths. A modified biaxial stretching device based on Billiar and Sacks (J. Biomech., 30, pp. 753-7, 1997) was used, with a real-time analysis of the fiber kinematics made possible due to the natural translucency of SIS. Results indicated that the angular distribution of collagen fibers in specimens subjected to 10% equibiaxial strain was not significantly different from the initial unloaded condition, regardless of the loading path (p=0.31). Both 10% strip biaxial stretch and uniaxial stretches of greater than 5% in the preferred fiber direction led to an increase in the collagen fiber alignment along the same direction, while 10% strip biaxial stretch in the cross preferred fiber direction led to a broadening of the distribution. While an affine deformation model accurately predicted the experimental findings for a biaxial strain state, uniaxial stretch paths were not accurately predicted. Nonaffine structural models will be necessary to fully predict the fiber kinematics under large uniaxial strains in SIS.  相似文献   

14.
The diaphragmatic muscle tendon is a biaxially loaded junction in vivo. Stress-strain relations along and transverse to the fiber directions are important in understanding its mechanical properties. We hypothesized that 1) the central tendon possesses greater passive stiffness than adjacent muscle, 2) the diaphragm muscle is anisotropic, whereas the central tendon near the junction is essentially isotropic, and 3) a gradient in passive stiffness exists as one approaches the muscle-tendinous junction (MTJ). To investigate these hypotheses, we conducted uniaxial and biaxial mechanical loading on samples of the MTJ excised from the midcostal region of dog diaphragm. We measured passive length-tension relationships of the muscle, tendon, and MTJ in the direction along the muscle fibers as well as transverse to the fibers. The MTJ was slack in the unloaded state, resulting in a J-shaped passive tension-strain curve. Generally, muscle strain was greater than that of MTJ, which was greater than tendon strain. In the muscular region, stiffness in the direction transverse to the fibers is much greater than that along the fibers. The central tendon is essentially inextensible in the direction transverse to the fibers as well as along the fibers. Our data demonstrate the existence of more pronounced anisotropy in the muscle than in the tendon near the junction. Furthermore, a gradient in muscle stiffness exists as one approaches the MTJ, consistent with the hypothesis of continuous passive stiffness across the MTJ.  相似文献   

15.
Force-elongation responses of the human abdominal wall in the linea alba region were determined by tensile tests in which the linea alba was seen to exhibit a nonlinear elastic, anisotropic behavior as is frequently observed in soft biological tissues. In addition, the geometry of the abdominal wall was determined, based on MRI data. The geometry can be specified by principal radii of curvature in longitudinal of approximately 470 mm and in the transverse direction of about 200 mm. The determined radii agree with values found in other studies. Mechanical stresses, deformations and abdominal pressures for load cases above 6% elongation can be related using Laplace's formula and our constitutive and geometrical findings. Results from uni- and biaxial tensile tests can thus be compared using this model. Calculations confirm that abdominal pressures of approximately 20 kPa correspond to related biaxial forces of about 3.4N/mm in the transverse and 1.5 N/mm in the longitudinal direction. Young's moduli can be calculated with respect to the uniaxial as well as the biaxial loading. At these physiological loadings, a compliance ratio of about 2:1 between the longitudinal and transversal directions is found. Young's moduli of about 50 kPa occur in transversal direction and of about 20 kPa in longitudinal direction at transverse and longitudinal strains both in the order of 6%. These findings coincide with results from other investigations in which the properties of the abdominal wall have been examined.  相似文献   

16.
Under tensile loading, tendon undergoes a number of unique structural changes that govern its mechanical response. For example, stretching a tendon is known to induce both the progressive “uncrimping” of wavy collagen fibrils and extensive lateral contraction mediated by fluid flow out of the tissue. However, it is not known whether these processes are interdependent. Moreover, the rate-dependence of collagen uncrimping and its contribution to tendon's viscoelastic mechanical properties are unknown. Therefore, the objective of this study was to (a) develop a methodology allowing for simultaneous measurement of crimp, stress, axial strain and lateral contraction in tendon under dynamic loading; (b) determine the interdependence of collagen uncrimping and lateral contraction by testing tendons in different swelling conditions; and (c) assess how the process of collagen uncrimping depends on loading rate. Murine flexor carpi ulnaris (FCU) tendons in varying ionic environments were dynamically stretched to a set strain level and imaged through a plane polariscope with the polarizer and analyzer at a fixed angle. Analysis of the resulting images allowed for direct measurement of the crimp frequency and indirect measurement of the tendon thickness. Our findings demonstrate that collagen uncrimping and lateral contraction can occur independently and interstitial fluid impacts tendon mechanics directly. Furthermore, tensile stress, transverse contraction and degree of collagen uncrimping were all rate-dependent, suggesting that collagen uncrimping plays a role in tendon's dynamic mechanical response. This study is the first to characterize the time-dependence of collagen uncrimping in tendon, and establishes structure–function relationships for healthy tendons that can be used to better understand and assess changes in tendon mechanics after disease or injury.  相似文献   

17.
18.
Many load-bearing soft tissues exhibit mechanical anisotropy. In order to understand the behavior of natural tissues and to create tissue engineered replacements, quantitative relationships must be developed between the tissue structures and their mechanical behavior. We used a novel collagen gel system to test the hypothesis that collagen fiber alignment is the primary mechanism for the mechanical anisotropy we have reported in structurally anisotropic gels. Loading constraints applied during culture were used to control the structural organization of the collagen fibers of fibroblast populated collagen gels. Gels constrained uniaxially during culture developed fiber alignment and a high degree of mechanical anisotropy, while gels constrained biaxially remained isotropic with randomly distributed collagen fibers. We hypothesized that the mechanical anisotropy that developed in these gels was due primarily to collagen fiber orientation. We tested this hypothesis using two mathematical models that incorporated measured collagen fiber orientations: a structural continuum model that assumes affine fiber kinematics and a network model that allows for nonaffine fiber kinematics. Collagen fiber mechanical properties were determined by fitting biaxial mechanical test data from isotropic collagen gels. The fiber properties of each isotropic gel were then used to predict the biaxial mechanical behavior of paired anisotropic gels. Both models accurately described the isotropic collagen gel behavior. However, the structural continuum model dramatically underestimated the level of mechanical anisotropy in aligned collagen gels despite incorporation of measured fiber orientations; when estimated remodeling-induced changes in collagen fiber length were included, the continuum model slightly overestimated mechanical anisotropy. The network model provided the closest match to experimental data from aligned collagen gels, but still did not fully explain the observed mechanics. Two different modeling approaches showed that the level of collagen fiber alignment in our uniaxially constrained gels cannot explain the high degree of mechanical anisotropy observed in these gels. Our modeling results suggest that remodeling-induced redistribution of collagen fiber lengths, nonaffine fiber kinematics, or some combination of these effects must also be considered in order to explain the dramatic mechanical anisotropy observed in this collagen gel model system.  相似文献   

19.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

20.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号