首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolic dissipation in Murray's minimum energy hypothesis includes only the blood metabolism. The metabolic dissipation of the vascular tree, however, should also include the metabolism of passive and active components of the vessel wall. In this study, we extend the metabolic dissipation to include blood metabolism, as well as passive and active components of the vessel wall. The analysis is extended to the entire vascular arterial tree rather than a single vessel as in Murray's formulation. The calculations are based on experimentally measured morphological data of coronary artery network and the longitudinal distribution of blood pressure along the tree. Whereas the model includes multiple dissipation sources, the total metabolic consumption of a complex vascular tree is found to remain approximately proportional to the cumulative arterial volume of the unit. This implies that the previously described scaling relations for the various morphological features (volume, length, diameter, and flow) remain unchanged under the generalized condition of metabolic requirements of blood and blood vessel wall.  相似文献   

2.
Intravenous administration of histamine causes an increase in choroidal blood flow and retinal vessel diameter in healthy subjects. The mechanism underlying this effect remains to be elucidated. In the present study, we hypothesized that H2 receptor blockade alters hemodynamic effects of histamine in the choroid and retina. Eighteen healthy male nonsmoking volunteers were included in this randomized, double-masked, placebo-controlled two-way crossover study. Histamine (0.32 microg.kg(-1).min(-1) over 30 min) was infused intravenously in the absence (NaCl as placebo) or presence of the H2 blocker cimetidine (2.3 mg/min over 50 min). Ocular hemodynamic parameters, blood pressure, and intraocular pressure were measured before drug administration, after infusion of cimetidine or placebo, and after coinfusion of histamine. Subfoveal choroidal blood flow and fundus pulsation amplitude were measured with laser-Doppler flowmetry and laser interferometry, respectively. Retinal arterial and venous diameters were measured with a retinal vessel analyzer. Retinal blood velocity was assessed with bidirectional laser-Doppler velocimetry. Histamine increased subfoveal choroidal blood flow (+14 +/- 15%, P < 0.001), fundus pulsation amplitude (+11 +/- 5%, P < 0.001), retinal venous diameter (+3.0 +/- 3.6%, P = 0.002), and retinal arterial diameter (+2.8 +/- 4.2%, P < 0.01) but did not change retinal blood velocity. The H2 antagonist cimetidine had no significant effect on ocular hemodynamic parameters. In addition, cimetidine did not modify effects of histamine on choroidal blood flow, fundus pulsation amplitude, retinal venous diameter, and retinal arterial diameter compared with placebo. The present data confirm that histamine increases choroidal blood flow and retinal vessel diameters in healthy subjects. This ocular vasodilator effect of histamine is, however, not altered by administration of an H2 blocker. Whether the increase in blood flow is mediated via H1 receptors or other hitherto unidentified mechanisms remains to be elucidated.  相似文献   

3.
Wada S  Karino T 《Biorheology》1999,36(3):207-223
It is suspected that physical and fluid mechanical factors play important roles in the localization of atherosclerotic lesions and intimal hyperplasia in man by affecting the transport of cholesterol in flowing blood to arterial walls. Hence, we have studied theoretically the effects of various physical and fluid mechanical factors such as wall shear rate, diffusivity of low density lipoproteins (LDL), and filtration velocity of water at the vessel wall on surface concentration of LDL at an arterial wall by means of a computer simulation of convective and diffusive transport of LDL in flowing blood to the wall of a straight artery under conditions of a steady flow. It was found that under normal physiologic conditions prevailing in the human arterial system, due to the presence of a filtration flow of water at the vessel wall, flow-dependent concentration polarization (accumulation or depletion) of LDL occurs at a blood/endothelium boundary. The surface concentration of LDL at an arterial wall takes higher values than that in the bulk flow in that vessel, and it is affected by three major factors, that is, wall shear rate, gamma w, filtration velocity of water at the vessel wall, Vw, and the distance from the entrance of the artery, L. It increases with increasing Vw and L, and decreasing gamma w hence the flow rate. Thus, under certain circumstances, the surface concentration of LDL could rise locally to a value which is several times higher than that in the bulk flow, or drop locally to a value even lower than a critical concentration for the maintenance of normal functions and survival of cells forming the vessel wall. These results suggest the possibility that all the vascular phenomena such as the localization of atherosclerotic lesions and intimal hyperplasia, formation of cerebral aneurysms, and adaptive changes of lumen diameter and wall structure of arteries and veins to certain changes in hemodynamic conditions in the circulation are governed by this flow-dependent concentration polarization of LDL which carry cholesterol.  相似文献   

4.
We performed a randomized, subject-blinded, placebo and time-controlled, two-way crossover study in 12 healthy male subjects. Placebo or dopamine was administered on two separate study days. After saline infusion, dopamine hydrochloride was infused in three consecutive doses (5, 10, and 15 microg x kg(-1) x min(-1)). Plasma levels of dopamine were determined at each perfusion step. Arterial and venous retinal vessel diameters were measured with the use of a Zeiss retinal vessel analyzer. Diffuse luminance flicker stimuli of 8 Hz were applied for 60 s. Blood pressure and pulse rate were monitored continuously. Flicker stimulation (8 Hz) increased retinal vessel diameters under basal conditions. The response to 8-Hz flicker light was significantly reduced by dopamine administration. In addition, dopamine slightly but significantly increased retinal vessel diameters. Dopamine hydrochloride significantly increased systolic but not diastolic or mean arterial pressure. The present study indicates that dopamine has a distinct effect on retinal vessel diameters also attenuating the flicker-induced response reactivity of retinal vessels. This implies a role of dopamine in retinal blood flow hemodynamics.  相似文献   

5.
The effect of blood velocity pulsations on bioheat transfer is studied. A simple model of a straight rigid blood vessel with unsteady periodic flow is considered. A numerical solution that considers the fully coupled Navier-Stokes and energy equations is used for the simulations. The influence of the pulsation rate on the temperature distribution and energy transport is studied for four typical vessel sizes: aorta, large arteries, terminal arterial branches, and arterioles. The results show that: the pulsating axial velocity produces a pulsating temperature distribution; reversal of flow occurs in the aorta and in large vessels, which produces significant time variation in the temperature profile. Change of the pulsation rate yields a change of the energy transport between the vessel wall and fluid for the large vessels. For the thermally important terminal arteries (0.04-1 mm), velocity pulsations have a small influence on temperature distribution and on the energy transport out of the vessels (8 percent for the Womersley number corresponding to a normal heart rate). Given that there is a small difference between the time-averaged unsteady heat flux due to a pulsating blood velocity and an assumed nonpulsating blood velocity, it is reasonable to assume a nonpulsating blood velocity for the purposes of estimating bioheat transfer.  相似文献   

6.
Angiotensin II and endothelin-1 are potent vasoconstrictors that appear to play a role in retinal blood flow regulation. In the present study, we investigated the possible role of the angiotensin and the endothelin system in the regulation of retinal vessel diameters during isometric exercise in healthy humans. The study design was randomized, double-masked, placebo-controlled, and three-way cross over. Twelve healthy subjects performed squatting exercises for 6 min during infusion of either an angiotensin-converting enzyme inhibitor (enalapril), an ET(A)-receptor antagonist (BQ-123), or placebo. Retinal vessel diameters were measured continuously with the Zeiss retinal vessel analyzer. Systemic hemodynamics were assessed noninvasively, and intraocular pressure was measured with applanation tonometry. Squatting induced a significant increase in blood pressure and pulse rate, which was paralleled by a vasoconstriction in retinal arteries and veins. Intraocular pressure was only slightly increased during the squatting periods. BQ-123 significantly blunted the exercise-induced decrease in venous (P < 0.01) and arterial (P < 0.02, ANOVA) vessel diameters but had no effect on basal retinal diameters. By contrast, enalapril did neither influence vessel diameter at baseline conditions nor in response to isometric exercise. The data of the present study indicate that retinal vasoconstriction during isometric exercise is modified by ET(A)-receptor blockade, whereas it is not altered by angiotensin-converting enzyme inhibition. Hence, the present data indicate that endothelin-1, but not angiotensin II, is involved in retinal blood flow regulation during isometric exercise.  相似文献   

7.
Atherosclerotic plaques with high likelihood of rupture often show local temperature increase with respect to the surrounding arterial wall temperature. In this work, atherosclerotic plaque temperature was numerically determined during the different levels of blood flow reduction produced by the introduction of catheters at the vessel lumen. The temperature was calculated by solving the energy equation and the Navier-Stokes equations in 2D idealized arterial models. Arterial wall temperature depends on three basic factors: metabolic activity of the inflammatory cells embedded in the plaque, heat convection due to luminal blood flow, and heat conduction through the arterial wall and plaque. The calculations performed serve to simulate transient blood flow reduction produced by the presence of thermography catheters used to measure arterial wall temperature. The calculations estimate the spatial and temporal alterations in the cooling effect of blood flow and plaque temperature during the measurement process. The mathematical model developed provides a tool for analyzing the contribution of factors known to affect heat transfer at the plaque surface. Blood flow reduction leads to a nonuniform temperature increase ranging from 0.1 to 0.25 degrees Celsius in the plaque/lumen interface of the arterial geometries considered in this study. The temperature variation as well as the Nusselt number calculated along the plaque surface strongly depended on the arterial geometry and distribution of inflammatory cells. The calculations indicate that the minimum required time to obtain a steady temperature profile after arterial occlusion is 6 s. It was seen that in arteries with geometries involving bends, the temperature profiles appear asymmetrical and lean toward the downstream edge of the plaque.  相似文献   

8.
The objective of this study was to evaluate whether the nitric oxide (NO) released from vascular endothelial cells would decrease vessel wall oxygen consumption by decreasing the energy expenditure of mechanical work by vascular smooth muscle. The oxygen consumption rate of arteriolar walls in rat cremaster muscle was determined in vivo during NO-dependent and -independent vasodilation on the basis of the intra- and perivascular oxygen tension (Po2) measured by phosphorescence quenching laser microscopy. NO-dependent vasodilation was induced by increased NO production due to increased blood flow, whereas NO-independent vasodilation was induced by topical administration of papaverine. The energy efficiency of vessel walls was evaluated by the variable ratio of circumferential wall stress (amount of mechanical work) to vessel wall oxygen consumption rate (energy cost) in the arteriole between normal and vasodilated conditions. NO-dependent and -independent dilation increased arteriolar diameters by 13 and 17%, respectively, relative to the values under normal condition. Vessel wall oxygen consumption decreased significantly during both NO-dependent and -independent vasodilation compared with that under normal condition. However, vessel wall oxygen consumption during NO-independent vasodilation was significantly lower than that during NO-dependent vasodilation. On the other hand, there was no significant difference between the energy efficiency of vessel walls during NO-dependent and -independent vasodilation, suggesting the decrease in vessel wall oxygen consumption produced by NO to be related to reduced mechanical work of vascular smooth muscle.  相似文献   

9.
An important number of surgical procedures for creation of vascular access (VA) in haemodialysis patients still results in non-adequate increase in blood flow (non-maturation). The rise in blood flow in arteriovenous shunts depends on vascular remodelling. Computational tools to predict the outcome of VA surgery would be important in this clinical context. The aim of our investigation was then to develop a 0D/1D computational model of arm vasculature able to simulate vessel wall remodelling and related changes in blood flow. We assumed that blood vessel remodelling is driven by peak wall shear stress. The model was calibrated with previously reported values of radial artery diameter and blood flow after end-to-end distal fistula creation. Good agreement was obtained between predicted changes in VA flow and in arterial diameter after surgery and corresponding measured values. The use of this computational model may allow accurate vascular surgery planning and ameliorate VA surgery outcomes.  相似文献   

10.
Endothelial cells (ECs), besides being a permeability barrier between the blood and vessel wall, perform many important functions, e.g., cell migration, remodeling, proliferation, and the production, secretion and metabolism of biochemical substances, as well as the regulation of contractility of vascular smooth muscle cells (SMCs). Their function is modulated by chemical ligands as well as mechanical factors. The mechanical stresses acting on the vessel wall include the normal and circumferential stresses that result from the action of blood pressure, the shear stress that acts parallel to the luminal surface of the vessel due to blood flow and the magnitude and orientation of the gravitation field. The aim of this work was to design and construct a novel bioreactor for the stimulation of endothelial cells in vitro with a combination of mechanical factors that simulates their in vivo environment.  相似文献   

11.
It has been extensively documented that changes in blood flow induce vascular remodeling and this phenomenon seems to be correlated to the shear forces imposed on the vessel wall by motion of blood. Wall shear stress, the tractive force that acts on the endothelium, has been shown to influence endothelial cell function. To study changes in wall shear stress that develop on the vessel wall upon changes of blood flow, we set up a technique that allows estimation of shear stress in the radial artery of patients on chronic hemodialysis therapy. The technique is based on color-flow Doppler examination of the radial artery before and after surgical creation of radiocephalic fistula for hemodialysis. Calculation of time function wall shear stress and blood flow rate in the radial artery is performed on the basis of arterial diameter, center-line velocity waveform and blood viscosity, using a numerical method developed according to Womersley's theory for pulsatile flow in tubes. The results presented confirm that the model developed is suitable for calculation of the wall shear stress that develops in the radial artery of patients before and after surgical creation of an arteriovenous fistula for hemodialysis. This methodology was developed for characterization of wall shear stress in the radial artery but may be well applied to other vessels that can be examined by echo-Doppler technique.  相似文献   

12.
Blood flow regulation in the cerebral microvasculature with an arcadal network was investigated using a numerical simulation. A mathematical model for blood flow in the arcadal network, based on in vivo data of cat cerebral microvasculature and flow velocity was developed. The network model consists of 45 vessel segments and 25 branching points. To simulate microvascular response to blood flow, non-reactive (solid), cerebral arteriole-like, or skeletal muscle arteriole-like responses to wall shear stress were taken into account. Numerical calculation was carried out in the flow condition where the inlet (arterial) pressure was changed from 60 to 120 mmHg. Flow-rate in each efferent vessel and the mean flow-rate over all efferent vessels were evaluated for assessment of blood supply to the local area of cerebral tissue. The simulation demonstrated the wall shear stress-induced vasodilation in the arcadal network worked to maintain the blood flow at a constant level with pressure variable in a wide range. It is suggested that an individual microvessel (segment) should join in the regulatory process of flow, interacting with other microvessels (cooperative regulation).  相似文献   

13.

Purpose

There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimeter (LDV).

Methods

10 healthy subjects were studied on 2 study days. On one study day the effect of 100% oxygen breathing on retinal blood velocities was studied using dual-beam bidirectional Doppler FD-OCT. On the second study day the effect of 100% oxygen breathing on retinal blood velocities was assessed by laser Doppler velocimetry (LDV). Retinal vessel diameters were measured on both study days using a commercially available Dynamic Vessel Analyzer. Retinal blood flow was calculated based on retinal vessel diameters and red blood cell velocity.

Results

As expected, breathing of pure oxygen induced a pronounced reduction in retinal vessel diameters, retinal blood velocities and retinal blood flow on both study days (p<0.001). Blood velocity data correlated well between the two methods applied under both baseline as well as under hyperoxic conditions (r = 0.98 and r = 0.75, respectively). Data as obtained with OCT were, however, slightly higher.

Conclusion

A good correlation was found between red blood cell velocity as measured with dual-beam bidirectional Doppler FD-OCT and red blood cell velocity assessed by the laser Doppler method. Dual-beam bidirectional Doppler FD-OCT is a promising approach for studying retinal blood velocities in vivo.  相似文献   

14.
Individualized modeling and simulation of blood flow mechanics find applications in both animal research and patient care. Individual animal or patient models for blood vessel mechanics are based on combining measured vascular geometry with a fluid structure model coupling formulations describing dynamics of the fluid and mechanics of the wall. For example, one-dimensional fluid flow modeling requires a constitutive law relating vessel cross-sectional deformation to pressure in the lumen. To investigate means of identifying appropriate constitutive relationships, an automated segmentation algorithm was applied to micro-computerized tomography images from a mouse lung obtained at four different static pressures to identify the static pressure–radius relationship for four generations of vessels in the pulmonary arterial network. A shape-fitting function was parameterized for each vessel in the network to characterize the nonlinear and heterogeneous nature of vessel distensibility in the pulmonary arteries. These data on morphometric and mechanical properties were used to simulate pressure and flow velocity propagation in the network using one-dimensional representations of fluid and vessel wall mechanics. Moreover, wave intensity analysis was used to study effects of wall mechanics on generation and propagation of pressure wave reflections. Simulations were conducted to investigate the role of linear versus nonlinear formulations of wall elasticity and homogeneous versus heterogeneous treatments of vessel wall properties. Accounting for heterogeneity, by parameterizing the pressure/distention equation of state individually for each vessel segment, was found to have little effect on the predicted pressure profiles and wave propagation compared to a homogeneous parameterization based on average behavior. However, substantially different results were obtained using a linear elastic thin-shell model than were obtained using a nonlinear model that has a more physiologically realistic pressure versus radius relationship.  相似文献   

15.
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R2>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.  相似文献   

16.
Progressive accumulation of cholesterol in the arterial wall causes atherosclerosis, the pathologic process underlying most heart attacks and strokes. Low density lipoprotein (LDL), the major carrier of blood cholesterol, has been implicated in the buildup of cholesterol in atherosclerotic plaques. Endothelial cells that line arteries function to transport LDL into the vessel wall. Models for the mechanism of cholesterol accumulation in atherosclerotic plaques emphasize increased LDL uptake into the vessel wall or increased retention of LDL that has entered the vessel wall. This article reviews the pathways of cholesterol entry and removal, the metabolism, and the physical changes of cholesterol in the vessel wall. How these processes are believed to contribute to cholesterol buildup in atherosclerotic plaques is discussed.  相似文献   

17.
It is shown that the LDL peroxide lipid products level is 1.6-4 times higher in patients with the ischemic heart diseases (IHD) than in normal subjects. At the same time the LDL uptake by macrophages was identical in case of normal subjects and of IHD patients. It is suggested that the LDL premodification in the blood flow in the IHD patients promotes the further modification of LDL particles after their penetration into the vessel wall.  相似文献   

18.
An introduction to biofluid mechanics--basic models and applications   总被引:9,自引:0,他引:9  
Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics play a critical role in the development of atherosclerosis and the processes of aging, as well as many other disease processes. Biofluid mechanics play a major role in the cardiovascular system and it is important to understand the forces and movement of blood cells and whole blood as well as the interaction between blood cells and the vessel wall. Fundamental fluid mechanical, which are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects are presented. Measurement techniques for model studies such as LDA, ultrasound, and MRI studies will be discussed. Viscosity and flow behavior changes specifically the creation of vortices and flow disturbances can be used to show how medication can influence flow behavior. Experiments have shown that hemodynamics may have a strong influence on the creation of aneurysms and varicose veins. Other factors such as vessel wall structure are also important. In preliminary studies, it has been demonstrated that geometry and elasticity of vessel walls help determine flow behavior. High velocity fluctuations indicate flow disturbances that should be avoided. Health care practitioners must understand fluid dynamic factors such as flow rate ratio, pressure and velocity gradients, and flow behavior, velocity distribution, shear stress on the wall and on blood cells. These mechanical factors are largely responsible for the deposit of blood cells and lipids, a leading cause of atherosclerosis. The interaction between blood cells and of the cells with the vessel, leads to the formation of plaques and agglomerations. These deposits are found predominantly at arterial bends and bifurcations where blood flow is disturbed, where a secondary flow is created, and where flow separation regions are found. Experiments on hemodynamic effects in elastic silicon rubber models of the cardiovascular system with flow wire, stents, or patches for vessel surgery will be discussed. These studies can be important in improving diagnostics and therapeutic applications.  相似文献   

19.
Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.  相似文献   

20.
The purpose of the present study was to investigate the contribution of basal nitric oxide (NO) on retinal vascular tone in humans. In addition, we set out to elucidate the role of NO in flicker-induced retinal vasodilation in humans. Twelve healthy young subjects were studied in a three-way crossover design. Subjects received an intravenous infusion of either placebo or NG-monomethyl-L-arginine (L-NMMA; 3 or 6 mg/kg over 5 min), an inhibitor of NO synthase. Thereafter, diffuse luminance flicker was consecutively performed for 16, 32, and 64 s at a frequency of 8 Hz. The effect of L-NMMA on retinal arterial and venous diameter was assessed under resting conditions and during the hyperemic flicker response. Retinal vessel diameter was measured with a Zeiss retinal vessel analyzer. L-NMMA significantly reduced arterial diameter (3 mg/kg: -2%; 6 mg/kg: -4%, P < 0.001) and venous diameter (3 mg/kg: -5%; 6 mg/kg: -8%, P < 0.001). After placebo infusion, flicker induced a significant increase in retinal vessel diameter (P < 0.001). At a flicker duration of 64 s, arterial diameter increased by 4% and venous diameter increased by 3%. L-NMMA did not abolish these hyperemic responses but blunted venous vasodilation (P = 0.017) and arterial vasodilation (P = 0.02) in response to flicker stimulation. Our data indicate that NO contributes to basal retinal vascular tone in humans. In addition, NO appears to play a role in flicker-induced vasodilation of the human retinal vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号