首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene result in defective epithelial cAMP-dependent Cl(-) secretion and increased airway Na(+) absorption. The mechanistic links between these altered ion transport processes and the pathogenesis of cystic fibrosis lung disease, however, are unclear. To test the hypothesis that accelerated Na(+) transport alone can produce cystic fibrosis-like lung disease, we generated mice with airway-specific overexpression of epithelial Na(+) channels (ENaC). Here we show that increased airway Na(+) absorption in vivo caused airway surface liquid (ASL) volume depletion, increased mucus concentration, delayed mucus transport and mucus adhesion to airway surfaces. Defective mucus transport caused a severe spontaneous lung disease sharing features with cystic fibrosis, including mucus obstruction, goblet cell metaplasia, neutrophilic inflammation and poor bacterial clearance. We conclude that increasing airway Na(+) absorption initiates cystic fibrosis-like lung disease and produces a model for the study of the pathogenesis and therapy of this disease.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR), which is aberrant in patients with cystic fibrosis, normally functions both as a chloride channel and as a pleiotropic regulator of other ion transporters. Here we show, by ratiometric imaging with luminally exposed pH-sensitive green fluorescent protein, that CFTR affects the pH of cellubrevin-labeled endosomal organelles resulting in hyperacidification of these compartments in cystic fibrosis lung epithelial cells. The excessive acidification of intracellular organelles was corrected with low concentrations of weak base. Studies with proton ATPase and sodium channel inhibitors showed that the increased acidification was dependent on proton pump activity and sodium transport. These observations implicate sodium efflux in the pH homeostasis of a subset of endocytic organelles and indicate that a dysfunctional CFTR in cystic fibrosis leads to organellar hyperacidification in lung epithelial cells because of a loss of CFTR inhibitory effects on sodium transport. Furthermore, recycling of transferrin receptor was altered in CFTR mutant cells, suggesting a previously unrecognized cellular defect in cystic fibrosis, which may have functional consequences for the receptors on the plasma membrane or within endosomal compartments.  相似文献   

3.
Cystic fibrosis is characterized by chronic inflammation and an imbalance in the concentrations of alveolar and lung oxidants and antioxidants, which result in cell damage. Modifications in lung glutathione concentrations are recognized as a salient feature of inflammatory lung diseases such as cystic fibrosis, and glutathione plays a major role in protection against oxidative stress and is important in modulation of apoptosis. The cystic fibrosis transmembrane conductance regulator (CFTR) is permeable to Cl(-), larger organic ions, and reduced and oxidized forms of glutathione, and the DeltaF508 CFTR mutation found in cystic fibrosis patients has been correlated with impaired glutathione transport in cystic fibrosis airway epithelia. Because intracellular glutathione protects against oxidative stress-induced apoptosis, we studied the susceptibility of epithelial cells (HeLa and IB3-1) expressing normal and mutant CFTR to apoptosis triggered by H(2)O(2). We find that cells with normal CFTR are more sensitive to oxidative stress-induced apoptosis than cells expressing defective CFTR. In addition, sensitivity to apoptosis could be correlated with glutathione levels, because depletion of intracellular glutathione results in higher levels of apoptosis, and glutathione levels decreased faster in cells expressing normal CFTR than in cells with defective CFTR during incubation with H(2)O(2). The pro-apoptotic BCL-2 family member, BAX, is also activated faster in cells expressing normal CFTR than in those with mutant CFTR under these conditions, and artificial glutathione depletion increases the extent of BAX activation. These results suggest that glutathione-dependent BAX activation in cells with normal CFTR represents an early step in oxidative stress-induced apoptosis of these cells.  相似文献   

4.
5.
Patients with cystic fibrosis have a lesion in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which is associated with abnormal regulation of other ion channels, abnormal glycosylation of secreted and cell surface molecules, and vulnerability to bacterial infection and inflammation in the lung usually leading to the death of these patients. The exact mechanism(s) by which mutation in CFTR leads to lung infection and inflammation is not clear. Mice bearing different mutations in the murine homolog to CFTR (Cftr) (R117H, S489X, Y122X, and DeltaF508, all backcrossed to the C57BL/6J background) were compared with respect to growth and in their ability to respond to lung infection elicited with Pseudomonas aeruginosa-laden agarose beads. Body weights of mice bearing mutations in Cftr were significantly smaller than wild-type mice at most ages. The inflammatory responses to P. aeruginosa-laden agarose beads were comparable in mice of all four Cftr mutant genotypes with respect to absolute and relative cell counts in bronchoalveolar lavage fluid, and cytokine levels (TNF-alpha, IL-1beta, IL-6, macrophage inflammatory protein-2, and keratinocyte chemoattractant) and eicosanoid levels (PGE2 and LTB4) in epithelial lining fluid: the few small differences observed occurred only between cystic fibrosis mice bearing the S489X mutation and those bearing the knockout mutation Y122X. Thus we cannot implicate either misprocessing of CFTR or failure of CFTR to reach the plasma membrane in the genesis of the excess inflammatory response of CF mice. Therefore, it appears that any functional defect in CFTR produces comparable inflammatory responses to lung infections with P. aeruginosa.  相似文献   

6.
Cystic fibrosis (CF) is the most frequent inherited disease in Caucasian populations and is due to a defect in the expression or activity of a chloride channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Mutations in this gene affect organs with exocrine functions and the main cause of morbidity and mortality for CF patients is the lung pathology in which the defect in CFTR decreases chloride secretion, lowering the airway surface liquid height and increasing mucus viscosity. The compromised ASL dynamics leads to a favorable environment for bacterial proliferation and sustained inflammation resulting in epithelial lung tissue injury, fibrosis and remodeling. In CF, there exist a difference in lung pathology between men and women that is termed the “CF gender gap”. Recent studies have shown the prominent role of the most potent form of estrogen, 17β-estradiol in exacerbating lung function in CF females and here, we review the role of this hormone in the CF gender dichotomy.  相似文献   

7.
Cystic fibrosis (CF) is caused by the loss of the cystic fibrosis transmembrane conductance regulator (CFTR) function and results in a respiratory phenotype that is characterized by dehydrated mucus and bacterial infections that affect CF patients throughout their lives. Much of the morbidity and mortality in CF results from a failure to clear bacteria from the lungs. What causes the defect in the bacterial clearance in the CF lung has been the subject of an ongoing debate. Here we discuss the arguments for and against the role of the epithelial sodium channel, ENaC, in the development of CF lung disease.  相似文献   

8.
Pseudomonas aeruginosa is an opportunistic pathogen that infects the lungs of patients with cystic fibrosis causing aberrant and destructive neutrophil (PMN)-dominated inflammation of airways. Interaction of P. aeruginosa with the lung epithelial barrier resulting in trans-epithelial PMN migration likely represents a key event during PMN recruitment. To investigate bacterial factors involved in interactions with lung epithelial cells, a mutant library of two-component system response regulators was evaluated to identify mutants exhibiting defects in the ability to induce PMN trans-epithelial migration. Of forty-eight mutants, five reproducibly demonstrated a reduced PMN trans-epithelial migration response. All five mutants also exhibited a decreased ability to interact with lung epithelial cells. One mutant identified lacks the response regulator gene roxR, which has not previously been reported to be involved regulating factors that facilitate interactions with lung epithelial cells. This finding suggests that RoxR likely regulates genes with relevance to P. aeruginosa mediated lung disease.  相似文献   

9.
Cystic fibrosis (CF) is the most common lethal monogenic disorder in Caucasians, estimated to affect one out of 2500-4000 new-borns. In patients with CF, lack of CF transmembrane conductance regulator (CFTR) Cl(-) channel function leads to progressive pulmonary damage and ultimately to death. Severe and persistent polymorphonuclear neutrophil-dominated endobronchial inflammation and chronic bacterial infection are characteristic hallmarks of CF lung disease. Whether CFTR dysfunction results directly in an increased predisposition to infection and whether inflammation arises independent of infection remains to be established. The loss of functional CFTR in airway epithelial cells promotes depletion and increased oxidation of the airway surface liquid. Activated neutrophils present in airways produce large amounts of proteases and reactive oxygen species (ROS). Together these changes are associated with diminished mucociliary clearance of bacteria, activation of epithelial cell signalling through multiple pathways, and subsequent hyperinflammatory responses in CF airways. The NF-kappaB pathway and Ca(2+) mobilization in airway epithelial cells are believed to be of key importance for control of lung inflammation through regulated production of mediators such as interleukin-8 that participate in recruitment and activation of neutrophils, modulation of apoptosis, and control of epithelial barrier integrity. In this review, the current understanding of the molecular mechanisms by which airway epithelial cells contribute to abnormal lung inflammation in CF, as well as the anti-inflammatory strategies that can be proposed are discussed.  相似文献   

10.
Reduced terminal sialylation at the surface of airway epithelial cells from patients with cystic fibrosis may predispose them to bacterial infection. To determine whether a lack of chloride transport or misprocessing of mutant cystic fibrosis transmembrane conductance regulator (CFTR) is critical for the alterations in glycosylation, we studied a normal human tracheal epithelial cell line (9/HTEo(-)) transfected with the regulatory (R) domain of CFTR, which blocks CFTR-mediated chloride transport; DeltaF508 CFTR, which is misprocessed, wild-type CFTR; or empty vector. Reduced cAMP-stimulated chloride transport is seen in the R domain and DeltaF508 transfectants. These two cell lines had consistent, significantly reduced binding of elderberry bark lectin, which recognizes terminal sialic acid in the alpha-2,6 configuration. Binding of other lectins, including Maakia amurensis lectin, which recognizes sialic acid in the alpha-2,3 configuration, was comparable in all cell lines. Because the cell surface change occurred in R domain-transfected cells, which continue to express wild-type CFTR, it cannot be related entirely to misprocessed or overexpressed CFTR. It is associated most closely with reduced CFTR activity.  相似文献   

11.
The aim of this hypothesis is to provide new insights into the still unclear mechanisms governing airway inflammation in cystic fibrosis. Although the genetic basis of cystic fibrosis as well as the molecular structure of cystic fibrosis transmembrane regulator (CFTR), the mutated protein which causes the disease, have been well defined, a clear relationship between the genetic defect and the pulmonary pathophysiology, especially chronic infections and neutrophil-dominated airway inflammation has not been established. Cystic fibrosis is thus a unique pathological situation in that neutrophils can be depicted as both an antiinfectious and a proinflammatory cell. In cystic fibrosis there is an emerging picture of an imbalance between these two roles with both a reduction in the antiinfectious efficacy and an augmentation of the proinflammatory functions. Better knowledge of fundamental defects in neutrophil function in cystic fibrosis as well as a novel cellular function of CFTR, which will be reviewed, will allow identification of potentially new clinical targets and aid selective therapeutic action aimed at counteracting the lethal neutrophil-induced airway inflammation. The rationale for colchicine therapy is a significant example of a drug which might act both at the molecular levels on CFTR expression in epithelial cells and on neutrophils to mediate antiinflammatory effects. Preliminary results are presented in this issue (Med Inflamm 1999; 8: 13-15).  相似文献   

12.
We investigated putative mechanisms by which nitric oxide modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and function in epithelial cells. Immunoprecipitation followed by Western blotting, as well as immunocytochemical and cell surface biotinylation measurements, showed that incubation of both stably transduced (HeLa) and endogenous CFTR expressing (16HBE14o-, Calu-3, and mouse tracheal epithelial) cells with 100 microm diethylenetriamine NONOate (DETA NONOate) for 24-96 h decreased both intracellular and apical CFTR levels. Calu-3 and mouse tracheal epithelial cells, incubated with DETA NONOate but not with 100 microm 8-bromo-cGMP for 96 h, exhibited reduced cAMP-activated short circuit currents when mounted in Ussing chambers. Exposure of Calu-3 cells to nitric oxide donors resulted in the nitration of a number of proteins including CFTR. Nitration was augmented by proteasome inhibition, suggesting a role for the proteasome in the degradation of nitrated proteins. Our studies demonstrate that levels of nitric oxide that are likely to be encountered in the vicinity of airway cells during inflammation may nitrate CFTR resulting in enhanced degradation and decreased function. Decreased levels and function of normal CFTR may account for some of the cystic fibrosis-like symptoms that occur in chronic inflammatory lung diseases associated with increased NO production.  相似文献   

13.
The susceptibility of cystic fibrosis patients to bacterial pathogens is associated with deficient airway antimicrobial peptide activity, and airway-surface-liquid dehydration with decreased transport velocity and hypersecretion of mucus. Susceptibility to Pseudomonas aeruginosa infection has been linked to the role of the cystic fibrosis transmembrane conductance regulator protein as a receptor for P. aeruginosa. Binding of P. aeruginosa coordinates lung clearance as part of innate immunity. The function of CFTR in innate immunity to P. aeruginosa infection is multifactorial, with one key component being a specific ligand-receptor interaction between the protein and the microbe.  相似文献   

14.
Cystic fibrosis is a common, fatal disorder caused by abnormalities in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encodes a chloride channel that regulates secretion in many exocrine tissues. The presentation of cystic fibrosis is highly variable as measured by the age of onset of disease, the presence of pancreatic insufficiency, or the progression of lung disease. Over 400 mutations in the CFTR gene have been described in cystic fibrosis patients and considerable effort has focused on the correlation between specific mutations and genotypes and clinical characteristics. Individual tissues display variation in their sensitivity to CFTR mutations. The vas deferens is functionally disrupted in nearly all males, whereas mild and severe pancreatic involvement is determined by the patient's genotype. The severity of pulmonary disease is poorly correlated with genotype, suggesting that there are other important genetic and/or environmental factors that contribute to lung infections and the subsequent disruption of lung function.  相似文献   

15.
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD), pneumonia, cystic fibrosis (CF), and bronchiectasis. Cif (PA2934), a bacterial toxin secreted in outer membrane vesicles (OMV) by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB), USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.  相似文献   

16.
A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epithelial cells (T2AECs) cultured at the air-liquid interface. CFTR was distributed exclusively to the apical surface of cultured T2AECs. Alveolar epithelia from CFTR(-/-) pigs failed to increase liquid absorption in response to agents that increase cAMP, whereas cAMP-stimulated liquid absorption in CFTR(+/-) epithelia was similar to that in CFTR(+/+) epithelia. Expression of recombinant CFTR restored stimulated liquid absorption in CFTR(-/-) T2AECs but had no effect on CFTR(+/+) epithelia. In ex vivo studies of nonperfused lungs, stimulated liquid absorption was defective in CFTR(-/-) alveolar epithelia but similar between CFTR(+/+) and CFTR(+/-) epithelia. When epithelia were studied at the air-liquid interface, elevating cAMP levels increased subphase liquid height in CFTR(+/+) but not in CFTR(-/-) T2AECs. Our findings demonstrate that CFTR is required for maximal liquid absorption under cAMP stimulation, but it is not the rate-limiting factor. Furthermore, our data define a role for CFTR in liquid secretion by T2AECs. These insights may help to develop new treatment strategies for pulmonary edema and respiratory distress syndrome, diseases in which lung liquid transport is disrupted.  相似文献   

17.
18.
Cystic fibrosis (CF)2 is a fatal genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) that is commonly associated with chronic pulmonary infections with mucoid Pseudomonas aeruginosa (PA). To test the hypothesis that CFTR plays a direct role in PA adhesion and clearance, we have used mouse lines expressing varying levels of human (h) or mouse (m) CFTR. A subacute intratracheal dose of 3 x 10(6) bacteria was cleared with similar kinetics in control wild-type (WT) and transgenic mice overexpressing hCFTR in the lung from the surfactant protein C (SP-C) promoter (SP-C-hCFTR+/-). In a second series of experiments, the clearance of an acute intratracheal dose of 1.5 x 10(7) PA bacteria was also similar in WT, hemizygous SP-C-hCFTR+/-, and bitransgenic gut-corrected FABP-hCFTR+/+-mCFTR-/-, the latter lacking expression of mCFTR in the lung. However, a small but significant decrease in bacterial killing was observed in lungs of homozygote SP-C-hCFTR+/+ mice. Lung pathology in both WT and SP-C-hCFTR+/+ mice was marked by neutrophilic inflammation and bacterial invasion of perivascular and subepithelial compartments. Bacteria were associated primarily with leukocytes and were not associated with alveolar type II or bronchiolar epithelial cells, the cellular sites of SP-C-hCFTR+/+ transgene expression. The results indicate that there is no direct correlation between levels of CFTR expression and bacterial clearance or association of bacteria with epithelial cells in vivo.  相似文献   

19.
Cystic fibrosis: a disease of vulnerability to airway surface dehydration   总被引:2,自引:0,他引:2  
Cystic fibrosis (CF) lung disease involves chronic bacterial infection of retained airway secretions (mucus). Recent data suggest that CF lung disease pathogenesis reflects the vulnerability of airway surfaces to dehydration and collapse of mucus clearance. This predisposition is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in (i) the absence of CFTR-mediated Cl- secretion and regulation of epithelial Na+ channel (ENaC) function; and (ii) the sole dependence on extracellular ATP to rebalance these ion transport processes through P2 purinoceptor signaling. Recent clinical studies indicate that inhalation of hypertonic saline osmotically draws sufficient water onto CF airway surfaces to provide clinical benefit.  相似文献   

20.
Recent molecular and cellular studies have shed new light on the basis for the susceptibility of cystic fibrosis (CF) patients to Pseudomonas aeruginosa infection. Changes in airway liquid composition and/or viscosity, enhanced bacterial binding to mucin and epithelial cell receptors, increased innate inflammation owing to disruptions in lipid metabolism and a role for the CFTR protein in bacterial ingestion and clearance have all been postulated. The high P. aeruginosa infection rate in CF patients can potentially be explained by the specificity of the interaction between the CFTR and P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号