首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Diazeniumdiolate anions and their prodrug forms are reliable sources of nitric oxide (NO) that have generated interest as promising therapeutic agents. A number of structural analogues of O(2)-(2,4-dinitro-5-(4-(N-methylamino)benzoyloxy)phenyl) 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO), an anti-cancer lead compound that is designed to release NO upon activation by glutathione, were prepared. The nitric oxide release patterns of these O(2)-(2,4-dinitrophenyl) diazeniumdiolates in the presence of glutathione were tested and it was found that in the absence of competing pathways, these compounds release nearly quantitative amounts of NO. The ability of PABA/NO and its structural analogues to inhibit human leukemia cell proliferation was determined and it was found that compounds releasing elevated amounts of NO displayed superior cytotoxic effects.  相似文献   

3.
The purpose of this study was to synthesize and study the in vitro enzymatic and non-enzymatic hydrolysis of indomethacin-TEG ester and amide prodrugs. It was found that the ester conjugate 10 was comparatively stable between pH 3 and 6 (half-life>90h), with a half-life equal to 5.2h in 80% buffered plasma. In contrast, the amide conjugate 12 appeared to be stable over the entire pH range studied with the only observed degradation being cleavage of the indolic N-4-chlorobenzoyl moiety.  相似文献   

4.
5.
6.
Three N-acyl (2, 3, and 4), two N-alkoxycarbonyl (5 and 6), and one N-acyloxymethyl (7) derivatives of albendazole (1) have been prepared and assessed as potential prodrugs. The determination of the aqueous solubility and partition coefficient, as well as the conversion of these derivatives to 1 in buffer solution, human plasma, and pig liver esterase were determined.  相似文献   

7.
Acylated chitooligosaccharide signals (Nod factors) trigger the development of root nodules on leguminous plants and play an important role in determining host specificity in the Rhizobium-plant symbiosis. Here, the ability of plant chitinases to hydrolyze different Nod factors and the potential significance of the structural modifications of Nod factors in stabilizing them against enzymatic inactivation were investigated. Incubation of the sulfated Nod factors of Rhizobium meliloti, NodRm-IV(S) and NodRm-V(S), as well as their desulfated derivatives NodRm-IV and NodRm-V, with purified chitinases from the roots of the host plant Medicago and the nonhost plant Vicia resulted in the release of the acylated lipotrisaccharide NodRm-III from NodRm-V, NodRm-IV and NodRm-V(S), whereas NodRm-IV(S) was completely resistant to digestion by both chitinases. Kinetic analysis showed that the structural parameters determining host specificity, the length of the oligosaccharide chain, the acylation at the nonreducing end and the sulfatation at the reducing end of the lipooligosaccharide, influence the stability of the molecule against degradation by chitinases. When the Nod factors were incubated in the presence of intact roots of Medicago, as well as of Vicia, the acylated lipotrisaccharide was similarly released in vivo from all Nod factors except NodRm-IV(S). In addition, a dimer-forming activity was observed in intact roots which also cleaved NodRm-IV(S). This activity was much greater in Medicago than in Vicia and increased upon incubation. The initial overall degradation rate of the Nod factors on Medicago was inversely correlated with their biological activities on Medicago roots. These results open the possibility that the activity of Nod factors on Medicago may partly be determined by the action of chitinases.  相似文献   

8.
Multimeric globins (e.g., hemoglobin) are considered to be the prototypes of allosteric enzymes, whereas monomeric globins (e.g., myoglobin; Mb) usually are assumed to be non-allosteric. However, the modulation of the functional properties of monomeric globins by non-covalent (or allosteric) and covalent modifications casts doubts on this general assumption. Here, we report examples referable to these two extreme mechanisms modulating the reactivity of three mammalian monomeric globins. Sperm whale Mb, which acts as a reserve supply of O2 and facilitates the O2 flux within a myocyte, displays the allosteric modulation of the O2 affinity on lactate, an obligatory product of glycolysis under anaerobic conditions, thus facilitating O2 diffusion to the mitochondria in supporting oxidative phosphorylation. Human neuroglobin (NGB), which appears to protect neurons from hypoxia in vitro and in vivo, undergoes hypoxia-dependent phosphorylation (i.e., covalent modulation) affecting the coordination equilibrium of the heme-Fe atom and, in turn, the heme-protein reactivity. This facilitates heme-Fe-ligand binding and enhances the rate of anaerobic nitrite reduction to form NO, thus contributing to cellular adaptation to hypoxia. The reactivity of human cytoglobin (CYGB), which has been postulated to protect cells against oxidative stress, depends on both non-covalent and covalent mechanisms. In fact, the heme reactivity of CYGB depends on the lipid, such as oleate, binding which stabilizes the penta-coordination geometry of the heme-Fe atom. Lastly, the reactivity of NGB and CYGB is modulated by the redox state of the intramolecular CysCD7/CysD5 and CysB2/CysE9 residue pairs, respectively, affecting the heme-Fe atom coordination state. In conclusion, the modulation of monomeric globins reactivity by non-covalent and covalent modifications appears a very widespread phenomenon, opening new perspectives in cell survival and protection. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

9.
Nucleoside chemistry represents an important research area for drug discovery, as many nucleoside analogs are prominent drugs and have been widely applied for cancer and viral chemotherapy. However, the synthesis of modified nucleosides presents a major challenge, which is further aggravated by poor solubility of these compounds in common organic solvents. Most of the currently available methods for nucleoside modification employ toxic high boiling solvents; require long reaction time and tedious workup methods. As such, there is constant effort to develop process chemistry in alternative medium to limit the use of organic solvents that are hazardous to the environment and can be deleterious to human health. One such approach is to use ionic liquids, which are ‘designer materials’ with unique and tunable physico-chemical properties. Studies have shown that methodologies using ionic liquids are highly efficient and convenient for the synthesis of nucleoside analogs, as demonstrated by the preparation of pharmaceutically important anti-viral drugs. This article summarizes recent efforts on nucleoside modification using ionic liquids.  相似文献   

10.
N-terminal modifications increase the neutral-pH stability of pepsin   总被引:1,自引:0,他引:1  
Bryksa BC  Tanaka T  Yada RY 《Biochemistry》2003,42(45):13331-13338
A structure-function study was undertaken to determine the effects of N-terminal mutations in pepsin designed to introduce the Lys-X-Tyr motif and increase N-terminal flexibility. At pH 7.0, E7K/T12A/E13Q pepsin was inactivated more slowly compared to WT, whereas the mutants E7K and T12A/E13Q were not stabilized. Far-UV circular dichroism revealed that changes in secondary structure accompanied the inactivation process, and that the structural changes occurred at approximately the same rate as inactivation. All of the inactivated pepsin forms showed retention of substantial secondary structure, more than previously determined for pepsin denatured at pH 7.2 and 8.0, suggesting the presence of a structural intermediate at pH 7.0. The coupled mutations at positions 12 and 13 impacted the pH dependence of activity at pH 0.9, lowered affinity for a synthetic substrate, and lowered the turnover number. The introduction of Lys at position 7 apparently destabilized the interaction between prosegment-enzyme body as evidenced by activation at higher pH (>or= 4.0) compared to WT, but showed no change for pH dependence of activity, nor a statistically significant change in affinity for the synthetic substrate.  相似文献   

11.
The modification of collagen molecular packing as a function of the removal of bound and structural water have been investigated on air-dried rat tail tendon. Isothermal curves, dilatometric measurement, high and small angle X-ray diffraction patterns—recorded using conventional and synchrotron radiaiton sources respectively—have been obtained on samples heated in air at different temperatures up to 200°C. A shortening of collagen intermolecular distances and slight modifications of quaternary structure and fibre dimensions can be observed during the release of bound water. The removal of structural water is accompanied by disordering of the three polypeptide chains, a strong reduction of fibre length and d-axial spacing, and modifications of the electron density distribution inside the repeating period. The structural modifications observed during the removal of bound water and of most of the structural water, obtained on heating, are reversible. Release of the most lightly bound water, probably associated with the beginning of the depolymerization process, induces irreversible modification of the molecular packing.  相似文献   

12.
A series of 5,6-dihydroxypyrimidine analogs were synthesized and evaluated for their anti-HIV activity in vitro. Among all of the analogs, several compounds exhibited significant anti-HIV activity, especially 1b and 1e, which showed the most potent anti-HIV activity with EC50 values of 0.14 and 0.15 μM, and TI (therapeutic index) values of >300 and >900, respectively. Further docking studies revealed that the representative compounds 1e and 3a could meet the HIV-1 integrase inhibition minimal requirements of a chelating domain (two metal ions) and an aromatic domain (π–π stacking interactions).  相似文献   

13.
We have demonstrated that levels of specific modification in histone H3 are modulated by members of the nucleosome-binding high mobility group N (HMGN) protein family in a variant-specific manner. HMGN1 (but not HMGN2) inhibits the phosphorylation of both H3S10 and H3S28, whereas HMGN2 enhances H3K14 acetylation more robustly than HMGN1. Two HMGN domains are necessary for modulating chromatin modifications, a non-modification-specific domain necessary for chromatin binding and a modification-specific domain localized in the C terminus of the HMGNs. Thus, chromatin-binding structural proteins such as HMGNs affect the levels of specific chromatin modifications and therefore may play a role in epigenetic regulation.  相似文献   

14.
15.
As local drug delivery continues to emerge as a clinical force, so does understanding of its potentially narrow therapeutic window. Classic molecular transport studies are of value but do not typically account for the local nature of drug transport or the effects of regional dynamic function in target tissues like muscle that may undergo cyclical and variable mechanical motion and loading. We examined the impact of dynamic architecture on intramuscular drug distribution. We designed a tissue mounting technique and mechanical loading system that uniquely enables pharmacokinetics investigations in association with control of muscle biomechanics while preserving physiologic tissue architecture. The system was validated and used to elucidate the influence of architecture and controlled cyclic strain on intramuscular drug distribution. Rat soleus muscles underwent controlled deformations within a drug delivery chamber that preserved in vivo physiology. Penetration of 1mM 20kDa FITC-dextran at planar surfaces of the soleus axial cross-section increased significantly from 0.52+/-0.09mm under 80min of static (0%) strain to 0.81+/-0.09mm under cyclic (3Hz, 0-20% peak-to-peak) strain, demonstrating the driving effect of cyclic loading on transport. Penetration at curved margins was 1.57- and 2.53-fold greater than at planar surfaces under static and cyclic strain, respectively, and was enhanced 1.6-fold more by cyclic strain, revealing architecturally dictated spatial heterogeneity in transport and modulation of motion dynamics. Architectural geometry and dynamics modulate the impact of mechanical loading on local drug penetration and intramuscular distribution. Future work will use the biomechanical test system to investigate mechanisms underlying transport effects of specific loading regimens. It is hoped that this work will initiate a broader understanding of intramuscular pharmacokinetics and guide local drug delivery strategies.  相似文献   

16.
Summary Optimum flocculating conditions for the yeast Kluyveromyces bulgaricus, in a glucose-bactopeptone medium, are obtained with 1.8 mM calcium for a carbohydrate/(nitrogenx6.25) ratio of 16.A comparative study of the wall phosphopeptidomannans extracted by pronase from flocculating and non-flocculating cultures showed that flocculation was associated with the following characteristics: increase of the amount and molecular weight of mannans, and higher phosphate contents; decrease of the amino acid and glucosamine rates, with a relative increase in hydroxy amino acids and decrease of basic amino acids; absence of galactose in both polymers although the flocculation was reversed by d-galactose. Acetolysis of the phosphopeptidomannan showed that the phenotypic expression of flocculation is correlated, at the structural level, with a lower content of N-acetylhexosamine residues linked to disaccharides and a higher content of phosphodisaccharides. According to these results the calcium dependent synthesis of a phosphopeptidomannan (instead of a N-acetylglucosaminopeptidomannan) with a larger and more branched structure, is necessary to allow the aggregation of the cells, via a presumed d-galactose sensible flocculating factor.  相似文献   

17.
Post-translational modifications of histone H3 tails have crucial roles in regulation of cellular processes. There is cross-regulation between the modifications of K4, K9, and K14 residues. The modifications on these residues drastically promote or inhibit each other. In this work, we studied the structural changes of the histone H3 tail originating from the three most important modifications; tri-methylation of K4 and K9, and acetylation of K14. We performed extensive molecular dynamics simulations of four types of H3 tails: (i) the unmodified H3 tail having no chemical modification on the residues, (ii) the tri-methylated lysine 4 and lysine 9 H3 tail (K4me3K9me3), (iii) the tri-methylated lysine 4 and acetylated lysine 14 H3 tail (K4me3K14ace), and (iv) tri-methylated lysine 9 and acetylated lysine 14 H3 tail (K9me3K14ace). Here, we report the effects of K4, K9, and K14 modifications on the backbone torsion angles and relate these changes to the recognition and binding of histone modifying enzymes. According to the Ramachandran plot analysis; (i) the dihedral angles of K4 residue are significantly affected by the addition of three methyl groups on this residue regardless of the second modification, (ii) the dihedral angle values of K9 residue are similarly altered majorly by the tri-methylation of K4 residue, (iii) different combinations of modifications (tri-methylation of K4 and K9, and acetylation of K14) have different influences on phi and psi values of K14 residue. Finally, we discuss the consequences of these results on the binding modes and specificity of the histone modifying enzymes such as DIM-5, GCN5, and JMJD2A.  相似文献   

18.
The disulfide bond structures established decades ago for immunoglobulins have been challenged by findings from extensive characterization of recombinant and human monoclonal IgG antibodies. Non-classical disulfide bond structure was first identified in IgG4 and later in IgG2 antibodies. Although, cysteine residues should be in the disulfide bonded states, free sulfhydryls have been detected in all subclasses of IgG antibodies. In addition, disulfide bonds are susceptible to chemical modifications, which can further generate structural variants such as IgG antibodies with trisulfide bond or thioether linkages. Trisulfide bond formation has also been observed for IgG of all subclasses. Degradation of disulfide bond through β-elimination generates free sulfhydryls disulfide and dehydroalanine. Further reaction between free sulfhydryl and dehydroalanine leads to the formation of a non-reducible cross-linked species. Hydrolysis of the dehydroalanine residue contributes substantially to antibody hinge region fragmentation. The effect of these disulfide bond variations on antibody structure, stability and biological function are discussed in this review.Key words: recombinant monoclonal antibody, disulfide bond, trisulfide bond, free sulfhydryl, dehydroalanine, thioether, aggregation  相似文献   

19.
Structural modifications of the phycobiont in the lichen thallus   总被引:1,自引:0,他引:1  
Summary Modifications in the fine structure of the algal component of two lichens,Aspicilia sp. andSquamarina crassa v.crassa, have been studied. It has been pointed out that fungal penetration is not essential for the mutual relationship between the two symbionts of the lichen thallus. The structural changes taking place during the life cycle of the phycobiont of the two lichens examined are not a response to fungal invasion.Careful examinations of serial sections revealed an interesting correlation between the growth pattern of the thallus and the distribution of the algal cells in the algal layer.Grateful acknowledgement is made to the Israel National Academy of Science for the support of this work.  相似文献   

20.
Macrophages are cells of natural immunity and play a key role in pathogenesis of viral infections. Results of ultrastructural research on macrophages infected with tick-borne encephalitis virus (TBEV), an agent that causes dangerous infections affecting nervous system in human beings and belongs to the Flaviviridae family, were shown here. Using virology methods, it was ascertained that the TBEV is consumed by macrophages and multiplies in them. Ultrastructural research showed that the virus penetrates into the cytoplasm by means of local plasmalemma lysis and newly synthesized virus particles escape from the cell by the same path. At the same time, induration of the perinuclear space of cytoplasm was observed, where ribosomes, microfilaments, ribonucleoprotein threats, and virus-specific structures, namely, nucleocapsids, tube formations, and viroplasts, were found in large quantities. On the surface of viroplasts, newly synthesized virus particles were visualized. Thus, evidence was presented that microphages can play certain role in spreading of TBEV and are the target of the virus. Like active antigen-presenting cells, such macrophages can modulate the protective response of an organism and affect the pathogenesis of tick-borne encephalitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号