首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatty acyl–acyl carrier protein (ACP) thioesterase (acyl-ACP TE) from Streptococcus pyogenes (strain MGAS10270) was codon-optimized and expressed in Escherichia coli K-12 W3110 and Escherichia coli K-12 MG1655. By employing codon-optimized S. pyogenes acyl-ACP TE to improve the total free fatty acids (FFAs) and to tailor the composition of FFAs, high-specificity production of saturated fatty acids (C12, C14) and unsaturated fatty acids (C18:1 C18:2) was achieved in recombinants. E. coli SGJS41 and SGJS46 (codon-optimized acyl-ACP TE of S. pyogenes) demonstrated the highest intracellular total FFA content (339 mg/l vs 342 mg/l); in particular, the content of C12 and C14 FFAs was about 3–5 fold, and the content of C18:1 and C18:2 FFAs was about 8–42 fold higher than that in the control E. coli and E. coli JES1017 (original acyl-ACP TE of S. pyogenes).  相似文献   

2.
Two anaerobic sludges previously loaded with oleate and palmitate accumulated 4570+/-257 and 5200+/-9 mgCOD-LCFAgVSS(-1), respectively. These sludges were incubated in batch assays and methane production was recorded after addition of 100-900 mg L(-1) of oleate and palmitate, respectively. The batch assays were conducted before and after allowing the depletion of the biomass-associated LCFA. The presence of biomass-associated LCFA decreased the capacity of both sludges to convert the added LCFA to methane. After the degradation of biomass-associated LCFA, the lag phases observed before the onset of methane production were significantly reduced, evidencing an increase in the tolerance of the acetotrophic methanogens to the presence of LCFA. In another experiment, three recurrent pulses were performed with a real dairy wastewater containing 3.6 gCOD L(-1), from which 53% was fat. Methane yields of 0.45+/-0.01, 0.88+/-0.02 and 1.29+/-0.08 gCOD-CH(4) gCOD(fed)(-1) were achieved in the first, second and third pulses, respectively, evidencing an increasing capacity of the sludge to convert substrate accumulated in previous additions.  相似文献   

3.
Although successful production of fatty alcohols in metabolically engineered Escherichia coli with heterologous expression of fatty acyl-CoA reductase has been reported, low biosynthetic efficiency is still a hurdle to be overcome. In this study, we examined the characteristics of two fatty acyl-CoA reductases encoded by Maqu_2220 and Maqu_2507 genes from Marinobacter aquaeolei VT8 on fatty alcohol production in E. coli. Fatty alcohols with diversified carbon chain length were obtained by co-expressing Maqu_2220 with different carbon chain length-specific acyl-ACP thioesterases. Both fatty acyl-CoA reductases displayed broad substrate specificities for C12–C18 fatty acyl chains in vivo. The optimized mutant strain of E. coli carrying the modified tesA gene and fadD gene from E. coli and Maqu_2220 gene from Marinobacter aquaeolei VT8 produced fatty alcohols at a remarkable level of 1.725 g/L under the fermentation condition.  相似文献   

4.
5.
The study of new biomaterials is the objective of many current research projects in biotechnological medicine. A promising scaffold material for the application in tissue engineering or other biomedical applications is polysialic acid (polySia), a homopolymer of alpha2,8-linked sialic acid residues, which represents a posttranslational modification of the neural cell adhesion molecule and occurs in all vertebrate species. Some neuroinvasive bacteria like, e.g. Escherichia coli K1 (E. coli K1) use polySia as capsular polysaccharide. In this latter case long polySia chains with a degree of polymerization of >200 are linked to lipid anchors. Since in vertebrates no polySia degrading enzymes exist, the molecule has a long half-life in the organism, but degradation can be induced by the use of endosialidases, bacteriophage-derived enzymes with pronounced specificity for polySia. In this work a biotechnological process for the production of bacterial polysialic acid is presented. The process includes the development of a multiple fed-batch cultivation of the E. coli K1 strain and a complete downstream strategy of polySia. A controlled feed of substrate at low concentrations resulted in an increase of the carbon yield (C(product)/C(substrate)) from 2.2 to 6.6%. The downstream process was optimized towards purification of long polySia chains. Using a series of adjusted precipitation steps an almost complete depletion of contaminating proteins was achieved. The whole process yielded 1-2g polySia from a 10-l bacterial culture with a purity of 95-99%. Further product analysis demonstrated maximum chain length of >130 for the final product.  相似文献   

6.
7.
Whereas microbial fermentation processes for producing ethanol and related alcohol biofuels are well established, biodiesel (methyl esters of fatty acids) is exclusively derived from plant oils. Slow cycle times for engineering oilseed metabolism and the excessive accumulation of glycerol as a byproduct are two major drawbacks of deriving biodiesel from plants. Although most bacteria produce fatty acids as cell envelope precursors, the biosynthesis of fatty acids is tightly regulated at multiple levels. By introducing four distinct genetic changes into the E. coli genome, we have engineered an efficient producer of fatty acids. Under fed-batch, defined media fermentation conditions, 2.5 g/L fatty acids were produced by this metabolically engineered E. coli strain, with a specific productivity of 0.024 g/h/g dry cell mass and a peak conversion efficiency of 4.8% of the carbon source into fatty acid products. At least 50% of the fatty acids produced were present in the free acid form.  相似文献   

8.
omega3-Very long chain polyunsaturated fatty acids (VLCPUFA) are essential for human development and brain function and, thus, are indispensable components of the human diet. The current main source of VLCPUFAs is represented by ocean fish stocks, which are in severe decline, and the development of alternative, sustainable sources of VLCPUFAs is urgently required. Our research aims at exploiting the powerful infrastructure available for the large scale culture of oilseed crops, such as rapeseed, to produce VLCPUFAs such as eicosapentaenoic acid in transgenic plants. VLCPUFA biosynthesis requires repeated desaturation and repeated elongation of long chain fatty acid substrates. In previous experiments the production of eicosapentaenoic acid in transgenic plants was found to be limited by an unexpected bottleneck represented by the acyl exchange between the site of desaturation, endoplasmic reticulum-associated phospholipids, and the site of elongation, the cytosolic acyl-CoA pool. Here we report on the establishment of a coordinated, exclusively acyl-CoA-dependent pathway, which avoids the rate-limiting transesterification steps between the acyl lipids and the acyl-CoA pool during VLCPUFA biosynthesis. The pathway is defined by previously uncharacterized enzymes, encoded by cDNAs isolated from the microalga Mantoniella squamata. The conceptual enzymatic pathway was established and characterized first in yeast to provide proof-of-concept data for its feasibility and subsequently in seeds of Arabidopsis thaliana. The comparison of the acyl-CoA-dependent pathway with the known lipid-linked pathway for VLCPUFA biosynthesis showed that the acyl-CoA-dependent pathway circumvents the bottleneck of switching the Delta6-desaturated fatty acids between lipids and acyl-CoA in Arabidopsis seeds.  相似文献   

9.
The fatty acid synthetase multienzyme from lactating rat mammary gland was modified either by removal of the two thioesterase I domains with trypsin or by inhibiting the thioesterase I activity with phenylmethanesulfonyl fluoride. The modified multienzymes are able to convert acetyl-CoA, malonyl-CoA, and NADPH to long chain acyl moieties (C16C22), which are covalently bound to the enzyme through thioester linkage, but they are unable to release the acyl groups as free fatty acids. A single enzyme-bound, long chain acyl thioester is formed by each molecule of modified multienzyme. Kinetic studies showed that the modified multienzymes rapidly elongate the acetyl primer moiety to a C16 thioester and that further elongation to C18, C20, and C22 is progressively slower. Thioesterase II, a mammary gland enzyme which is not part of the fatty acid synthetase multienzyme, can release the acyl moiety from its thioester linkage to either modified multienzyme. Kinetic data are consistent with the formation of an enzyme—substrate complex between thioesterase II and the acylated modified multienzymes. The present study demonstrates that the ability of thioesterase II to modify the product specificity of normal fatty acid synthetase is most likely attributable to the capacity of thioesterase II for hydrolysis of acyl moieties from thioester linkage to the multienzyme.  相似文献   

10.
11.
Acyl-CoA dehydrogenase gene (yafH) of Escherichia coli was expressed together with polyhydroxyalkanoate synthase gene (phaC(Ac)) and (R)-enoyl-CoA hydratase gene (phaJ(Ac)) from Aeromonas caviae. The expression plasmids were introduced into E. coli JM109, DH5 alpha and XL1-blue, respectively. Compared with the strains harboring only phaC(Ac) and phaJ(Ac), all recombinant E. coli strains harboring yafH, phaC(Ac) and phaJ(Ac) accumulated at least four times more poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Cell dry weights produced by all recombinants containing yafH were also considerably higher than that without yafH. The addition of acrylic acid which serves as inhibitor for beta-oxidation and may lead to more precursor supply for PHA synthesis did not result in improved PHBHHx production compared with that of the overexpression of yafH. It appeared that the overexpression of acyl-CoA dehydrogenase gene (yafH) enhanced the supply of enoyl-CoA which is the substrate of (R)-enoyl-CoA hydratase. With the enhanced precursor supply, the recombinants accumulated more PHBHHx.  相似文献   

12.
Several approaches to reduce acetate accumulation in Escherichia coli cultures have recently been reported. This reduction subsequently led to a significant enhancement in recombinant protein production. In those studies, metabolically engineered E. coli strains with reduced acetate synthesis rates were constructed through the modification of glucose uptake rate, the elimination of critical enzymes that are involved in the acetate formation pathways, and the redirection of carbon flux toward less inhibitory byproducts. In particular, it has been shown that strains carrying the Bacillus subtilis acetolactate synthase (ALS) gene not only produce less acetate but also have a higher ATP yield. Metabolic flux analysis of carbon flux distribution of the central metabolic pathways and at the pyruvate branch point revealed that this strain has the ability to channel excess pyruvate to the much less toxic compound, acetoin. The main focus of this study is the systematic analysis of the effects of small perturbations in the host's existing pathways on the redistribution of carbon fluxes. Specifically, a mutant with deleted acetate kinase (ACK) and acetyl phosphotransferase (PTA) was constructed and studied. Results from the metabolic analysis of carbon redistribution show the ackA-pta mutation will reduce acetate level at the expense of the growth rate. In addition, in the ackA-pta deficient strain a much higher lactate formation rate with simultaneously lower formate and ethanol synthesis rates was found. Expression of the B. subtilis ALS in ackA-pta mutants further reduces acetate levels while cell density similar to that of the parent strain is attained.  相似文献   

13.
利用游离整体细胞催化技术在工业规模上进行L-天冬氨酸的生产,发现游离整体细胞催化技术不仅缩短了工艺流程,减少了设备投资,而且反应效率(生产效率)、生产能力、生产成本等方面均优于传统的固定化细胞法。  相似文献   

14.
Regulation of fatty acid activation was studied in whole tissue homogenates of rat heart. The palmityl-CoA synthestase activity was proportional to the fatty acid to albumin ratio in the incubation medium with maximal activity occurring at a molar ratio of about 5. Fatty acyl-CoA synthetase activity was inhibited by products of the reaction (AMP, pyrophosphate, and palmityl-CoA). The apparent Ki for palmityl-CoA inhibition was 5 muM and this inhibition could be relieved by CoA-SH or albumin. The Km for CoA-SH in the absence of palmityl-CoA was 7 muM and was increased to 24 muM by addition of 8 muM palmityl-CoA. Cytosolic and mitochondrial levels of CoA-SH and carnitine were estimated in whole tissue homogenates of heart and liver. From 90 to 100% of whole tissue CoA was recovered in the mitochondrial fraction of heart muscle and it was estimated that the cytosolic concentration of free CoA-SH probably never exceeds its Km value for fatty acid activation in this tissue. Therefore, the rate of fatty acid activation would be expected to depend on the availability of CoA-SH in the cytosolic space. By adjusting the concentration of CoA-SH in the cytosol to the rate of acetyl-CoA oxidation, carnitineacetyl-CoA transferase may function in cardiac muscle to couple the rate of fatty acid activation in the cytosolic compartment to acetyl-CoA oxidation in the mitochondria. Approximately 30% of whole tissue CoA-SH was located in the cytosolic space in liver. Heart muscle has about twice as much carnitine as liver but in both tissues 100% of whole tissue carintine was located in the cytosolic space. The ratio of carnitine to CoA-SH in the cytosolic space was estimated to be about 100 in heart and 17 in liver. This high ratio in cardiac muscle may function to channel fatty acids toward oxidation rather than toward synthesis of complex lipids.  相似文献   

15.
16.
Effect of drought stress on the cytological status in Ricinus communis   总被引:2,自引:0,他引:2  
Growing leaves of dicots are characterized by the simultaneous development of cytological structure and physiological function. Cytological development of growing leaves of castor bean (Ricinus communis L.) and the impact of drought on this process was studied. Cell division was observed when the middle lobe of the leaf was below 8 cm length. Cell densities dropped when the middle leaflet had reached 4 cm. Identical relationships between leaf size (length of the middle lobe) and (I) exposed surface area of epidermal cells (ii) height of palisade cells, (iii) cell density and stomatal density were observed. During drought, areal growth decreased, but the relationships between the cytological parameters and leaf size did not change. The impact of drought on the cellular growth processes depended on the stage of cytological development at the onset of the drought. These results are the basis for an analysis of physiological and biochemical parameters in the forthcoming studies.  相似文献   

17.
Nie L  Ren Y  Schulz H 《Biochemistry》2008,47(29):7744-7751
When Escherichia coli is grown on oleic acid as the sole carbon source, most of this fatty acid is completely degraded by beta-oxidation. However, approximately 10% of the oleic acid is only partially degraded to 3,5- cis-tetradecadienoyl-CoA, which is hydrolyzed to 3,5- cis-tetradecadienoic acid and released into the growth medium. An investigation of thioesterases involved in this novel pathway of beta-oxidation led to the identification of a new thioesterase (thioesterase III) that is induced by growth of E. coli on oleic acid. This enzyme was partially purified and identified as the ybaW gene product by mass spectrometric analysis of tryptic peptides. The ybaW gene, which has a putative consensus sequence for binding the fatty acid degradation repressor, was cloned and expressed in E. coli. Thioesterase III was shown to be a long-chain acyl-CoA thioesterase that is most active with 3,5-tetradecadienoyl-CoA, a minor metabolite of oleate beta-oxidation. Its substrate specificity and induction by fatty acids agree with its proposed function in the thioesterase-dependent pathway of beta-oxidation. Thioesterase III is proposed to hydrolyze metabolites of beta-oxidation that are resistant to further degradation and that would inhibit the flux through the pathway if they were allowed to accumulate.  相似文献   

18.
RNA polymerase from Escherichia coli was inhibited by long chain fatty acyl CoAs, such as myristoyl CoA (Ki = 17.2 microM), palmitoyl CoA (Ki = 8.9 microM), oleoyl CoA (Ki = 5.5 microM), and stearoyl CoA (Ki = 0.94 microM). The inhibition by these CoA thioesters was non-competitive against nucleoside triphosphates. Short chain fatty acyl CoAs, such as acetyl CoA, propionyl CoA, acetoacetyl CoA, butyryl CoA, and decanoyl CoA, failed to inhibit RNA polymerase. CoA, Na-myristate, Na-palmitate, Na-oleate, Na-stearate, palmitoyl carnitine, and carnitine did not inhibit the enzyme. The inhibition of RNA polymerase by long chain fatty acyl CoAs was competitive against template DNA.  相似文献   

19.
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.  相似文献   

20.
Skeletal muscles contain a fraction of free (unesterified) fatty acids. This fraction is very small, but important since it contributes to the creation of the plasma-myocyte free fatty acid concentration gradient. Maintenance of this gradient is necessary for blood-borne fatty acids to be transported into the cell. There are no data on the regulation of the content and composition of the free fatty acid fraction in the cell. The aim of the present study was to examine the effect of an elevation and a reduction in the plasma-borne free fatty acid concentration on the content and composition of the free fatty acid fraction in different skeletal muscle types. The experiments were carried out on male Wistar rats with 280 - 310 g body weight. They were divided into four groups - 1, control; 2, exercised 3 h on a treadmill moving with a speed of 1,200 m/h and set at + 10 degrees incline; 3, treated with heparin; and 4, treated with nicotinic acid. Samples of the soleus as well as the red and white sections of the gastrocnemius muscles were taken. These muscles are composed mostly of slow-twitch oxidative, fast-twitch oxidative-glycolytic and fast-twitch glycolytic fibres, respectively. Lipids were extracted from the muscle samples and from the blood; the free fatty acid fraction was isolated by means of thin-layer chromatography. The individual free fatty acids were identified and quantified using gas-liquid chromatography. The plasma concentration of free fatty acids was as follows: control group, 236.1 +/- 32.9; after exercise, 407.4 +/- 117.5; after heparin, 400.8 +/- 36.8; and after nicotinic acid, 102.5 +/- 26.1 micromol/l (p < 0.01 vs. control values in each case). The total content of the free fatty acid fraction in the control group was as follows: white gastrocnemius, 27.6 +/- 7.3; red gastrocnemius, 52.2 +/- 13.9; soleus, 72.3 +/- 10.2 nmol/g. Elevation in plasma free acid concentration during exercise increased the total content of free fatty acids in the white gastrocnemius (38.7 +/- 13.9) and in the soleus (103.4 +/- 15.9 nmol/g; rest-exercise: p < 0.05 and p < 0.01, respectively), but had no effect in the red gastrocnemius. Neither elevation in the plasma free fatty acid concentration with heparin nor reduction with nicotinic acid affected the total content of the free fatty acid fraction in the muscles examined. The ratio of plasma concentration of individual acid to muscle concentration for the same acid varied greatly, depending on acid, muscle type and experimental group. The ratio was positive (above unity) for each acid almost in all cases with the exception of certain acids in the nicotinic acid-treated group where it was below unity. We conclude that the skeletal myocytes maintain a stable level of free fatty acid fraction in the wide range of plasma free fatty acid concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号