首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
Gene expression is controlled through a complex interplay among mRNAs, non-coding RNAs and RNA-binding proteins (RBPs), which all assemble along with other RNA-associated factors in dynamic and functional ribonucleoprotein complexes (RNPs). To date, our understanding of RBPs is largely limited to proteins with known or predicted RNA-binding domains. However, various methods have been recently developed to capture an RNA of interest and comprehensively identify its associated RBPs. In this review, we discuss the RNA-affinity purification methods followed by mass spectrometry analysis (AP-MS); RBP screening within protein libraries and computational methods that can be used to study the RNA-binding proteome (RBPome).  相似文献   

3.
4.
MicroRNAs (miRNAs) are genes involved in normal development and cancer. They inhibit gene expression by associating with 3'-Untranslated regions (3' UTRs) of messenger RNAs (mRNAs), and are thought to regulate a large proportion of protein coding genes. However, it is becoming apparent that miRNA activity is not necessarily always determined by its expression in the cell. MiRNA activity can be affected by RNA-binding proteins (RBPs). For example, the RNA-binding protein HuR associates with the 3'UTR of the CAT1 mRNA after stress, counteracting the effect of miR-122. Second, we found that the expression of an RNA-binding protein called Dead end (Dnd1) prohibits the function of several miRNAs by blocking the accessibility of target mRNAs. Dnd1 function is essential for proper development of primordial germ cells (PGCs) in zebrafish and mammals, indicating a crucial role for RBP/miRNA interplay on 3'UTRs of mRNAs in developmental decisions. In this perspective we discuss the interplay between RBPs and miRNAs in the context of germ cells and review current observations implicating RBPs in miRNA function.  相似文献   

5.
Long noncoding RNAs (lncRNAs) are a heterogeneous class of noncoding RNAs that have gained increasing attention due to their vital roles in the regulation of diverse cellular processes. Because lncRNAs are generally expressed at low levels, are poorly conserved, and can act via diverse mechanisms, investigating the molecular mechanisms by which lncRNAs act is challenging. Similar to mRNAs, lncRNAs bind to RNA-binding proteins (RBPs) and in some cases, have been shown to regulate the activity of the RBP they bind to. Furthermore, recent studies have shown that some lncRNAs directly bind to a specific RBP that, in turn, forms a complex with other proteins that mediate the effects of the lncRNA. We termed such RBPs as adaptor proteins because they function as adaptors to recruit other proteins that indirectly associate with the lncRNA. Here, we discuss the emerging roles of adaptor proteins in lncRNA function and propose mechanistic scenarios and strategies to identify adaptor proteins that could play vital roles in the biology of a lncRNA. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.  相似文献   

6.
7.
8.
RNA targets of multitargeted RNA-binding proteins (RBPs) can be studied by various methods including mobility shift assays, iterative in vitro selection techniques and computational approaches. These techniques, however, cannot be used to identify the cellular context within which mRNAs associate, nor can they be used to elucidate the dynamic composition of RNAs in ribonucleoprotein (RNP) complexes in response to physiological stimuli. But by combining biochemical and genomics procedures to isolate and identify RNAs associated with RNA-binding proteins, information regarding RNA-protein and RNA-RNA interactions can be examined more directly within a cellular context. Several protocols--including the yeast three-hybrid system and immunoprecipitations that use physical or chemical cross-linking--have been developed to address this issue. Cross-linking procedures in general, however, are limited by inefficiency and sequence biases. The approach outlined here, termed RNP immunoprecipitation-microarray (RIP-Chip), allows the identification of discrete subsets of RNAs associated with multi-targeted RNA-binding proteins and provides information regarding changes in the intracellular composition of mRNPs in response to physical, chemical or developmental inducements of living systems. Thus, RIP-Chip can be used to identify subsets of RNAs that have related functions and are potentially co-regulated, as well as proteins that are associated with them in RNP complexes. Using RIP-Chip, the identification and/or quantification of RNAs in RNP complexes can be accomplished within a few hours or days depending on the RNA detection method used.  相似文献   

9.
10.
11.
Protein–RNA interaction networks are essential to understand gene regulation control.Identifying binding sites of RNA-binding proteins(RBPs) by the UV-crosslinking and immunoprecipitation(CLIP) represents one of the most powerful methods to map protein–RNA interactions in vivo. However, the traditional CLIP protocol is technically challenging, which requires radioactive labeling and suffers from material loss during PAGE-membrane transfer procedures. Here we introduce a super-efficient CLIP method(Gold CLIP) that omits all gel purification steps. This nonisotopic method allows us to perform highly reproducible CLIP experiments with polypyrimidine tract-binding protein(PTB), a classical RBP in human cell lines. In principle, our method guarantees sequencing library constructions, providing the protein of interest can be successfully crosslinked to RNAs in living cells. Gold CLIP is readily applicable to diverse proteins to uncover their endogenous RNA targets.  相似文献   

12.
Emerging studies support that RNA-binding proteins(RBPs)play critical roles in human biology and pathogenesis.RBPs are essential players in RNA processing and metabolism,including pre-mRNA splicing,polyadenylation,transport,surveillance,mRNA localization,mRNA stability control,translational control and editing of various types of RNAs.Aberrant expression of and mutations in RBP genes affect various steps of RNA processing,altering target gene function.RBPs have been associated with various diseases,including neurological diseases.Here,we mainly focus on selected RNA-binding proteins including Nova-1/Nova-2,HuR/HuB/HuC/HuD,TDP-43,Fus,Rbfox1/Rbfox2,QKI and FMRP,discussing their function and roles in human diseases.  相似文献   

13.
Current understanding of the molecular mechanisms underlying mRNA degradation indicates that specific mRNA degradation rates are primarily encoded within the mRNA message itself in the form of cis-regulatory elements bearing particular primary sequences and/or secondary-structures. Such control elements are operated by RNA-binding proteins (RBPs) and/or miRNA-containing complexes. Based on the large number of RBPs and miRNAs encoded in metazoan genomes, their complex developmental expression and that specific RBP and miRNA interactions with mRNAs can lead to distinct degradation rates, I propose that developmental gene expression is shaped by a complex 'mRNA degradation code' with high information capacity. Localised cellular events involving the modification of RBP and/or miRNA target sequences in mRNAs by alternative polyadenylation added to the activation of specific RBP and miRNA activities via cell signalling are predicted to further expand the capacity of the mRNA degradation code by coupling it to dynamic events experienced by cells at specific spatiotemporal coordinates within the developing embryo.  相似文献   

14.
15.
16.
RNA结合蛋白(RNA binding protein, RBP)是基因表达调控的关键因子,参与包括蛋白质复合物的协调与稳定、RNA的加工与成熟以及mRNA的转运、稳定、翻译和降解等重要的细胞生物学过程。而RBP和RNA之间的相互作用可以在它们各自的生物学过程中起到重要作用。因此,快速、准确检测RBP-RNA相互作用的技术对研究RBP和RNA的功能至关重要。对近些年发展起来的RNA纯化的染色质分离(chromatin isolation by RNA purification,ChIRP)、RNA靶标的捕获杂交分析(capture hybridization analysis of RNA targets,CHART)、三分子荧光互补技术(trimolecular fluorescence complementation,TriFC)、RNA免疫共沉淀(RNA immunoprecipitation, RIP)、紫外交联免疫沉淀(UV-crosslinking and immunoprecipitation,CLIP)、RNA Pull-down和RNA电泳迁移分析等主要RBP-RNA相互作用鉴定技术的基本原理和优缺点以及应用进行了综述,旨在为新型技术的发现提供新的思路。  相似文献   

17.
18.
RNA-binding proteins (RBPs) regulate the expression of large cohorts of RNA species to produce programmatic changes in cellular phenotypes. To describe the function of RBPs within a cell, it is key to identify their mRNA-binding partners. This is often done by crosslinking nucleic acids to RBPs, followed by chemical release of the nucleic acid fragments for analysis. However, this methodology is lengthy, which involves complex processing with attendant sample losses, thus large amounts of starting materials and prone to artifacts. To evaluate potential alternative technologies, we tested “exclusion-based” purification of immunoprecipitates (IFAST or SLIDE) and report here that these methods can efficiently, rapidly, and specifically isolate RBP–RNA complexes. The analysis requires less than 1% of the starting material required for techniques that include crosslinking. Depending on the antibody used, 50% to 100% starting protein can be retrieved, facilitating the assay of endogenous levels of RBPs; the isolated ribonucleoproteins are subsequently analyzed using standard techniques, to provide a comprehensive portrait of RBP complexes. Using exclusion-based techniques, we show that the mRNA-binding partners for RBP IGF2BP1 in cultured mammary epithelial cells are enriched in mRNAs important for detoxifying superoxides (specifically glutathione peroxidase [GPX]-1 and GPX-2) and mRNAs encoding mitochondrial proteins. We show that these interactions are functionally significant, as loss of function of IGF2BP1 leads to destabilization of GPX mRNAs and reduces mitochondrial membrane potential and oxygen consumption. We speculate that this underlies a consistent requirement for IGF2BP1 for the expression of clonogenic activity in vitro.  相似文献   

19.
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3′ untranslated regions (3′ UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号