首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodontitis is an inflammatory disease of the supporting tissues of the teeth. Interleukin (IL)-13 is a multifunctional T-helper type2 (Th2) cytokine that can diminish inflammatory responses. I investigated using ELISA the effects of IL-13 on transforming growth factor-beta (TGF-β) and matrix metalloproteinase-1 (MMP-1). MMP-1 was detected using immunohistochemistry. Gingival fibroblasts were stimulated with IL-13 or together with tumor necrosis factor-α (TNF-α). I found that macrophage-like cells, fibroblast-like cells, vascular endothelial cells and gingival epithelial cells were stained more intensely for MMP-1 and were observed more frequently in the periodontitis affected group than in the control group. The cultured gingival fibroblasts with IL-13 produced more TGF-β than unstimulated cells. After stimulation with additional TNF-α, MMP-1 production was diminished. IL-13 may play a role in regulating collagen homeostasis in gingival fibroblasts. IL-13 induces both up-regulation of TGF-β, a cytokine known to stimulate production of collagen, and down-regulation of collagen-destroying MMP-1 production. This effect may be strong during periodontitis when Th2 cells assist T cells.  相似文献   

2.
Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity.  相似文献   

3.
4.
The effects of hepatocyte growth factor (HGF) and transforming growth factor-beta (TGF-β) on two morphological states of hepatocytes in monolayer and spheroid cultures, were examined in terms of their mitogenic ability and albumin expression. In monolayer culture on collagen-coated dishes, the increase in DNA content in the presence of HGF was observed when HGF was added within two days of cell isolation, whereas no increase in DNA was observed when HGF was added four days of cell isolation. DNA content increased even after four days, when HGF was added intermittently. On the other hand, spheroid formation was promoted on Primaria® dishes in HGF-free culture, whereas it was inhibited following the addition of HGF. No increase in DNA content was observed in spheroid cultures even in the presence of HGF throughout the culture period. The albumin production ability rapidly decreased in monolayer culture, but the decline was attenuated following the addition of HGF during the course of culture. A high albumin production ability was maintained independent of HGF supplementation in spheroid culture. Both DNA content and albumin production decreased rapidly following the addition of TGF-β1 in monolayer culture, and this decline was also attenuated following the addition of HGF to the medium.  相似文献   

5.
While elevated plasma prorenin levels are commonly found in diabetic patients and correlate with diabetic nephropathy, the pathological role of prorenin, if any, remains unclear. Prorenin binding to the (pro)renin receptor [(p)RR] unmasks prorenin catalytic activity. We asked whether elevated prorenin could be activated at the site of renal mesangial cells (MCs) through receptor binding without being proteolytically converted to renin. Recombinant inactive rat prorenin and a mutant prorenin that is noncleavable, i.e., cannot be activated proteolytically, are produced in 293 cells. After MCs were incubated with 10(-7) M native or mutant prorenin for 6 h, cultured supernatant acquired the ability to generate angiotensin I (ANG I) from angiotensinogen, indicating both prorenins were activated. Small interfering RNA (siRNA) against the (p)RR blocked their activation. Furthermore, either native or mutant rat prorenin at 10(-7) M alone similarly and significantly induced transforming growth factor-β(1), plasminogen activator inhibitor-1 (PAI-1), and fibronectin mRNA expression, and these effects were blocked by (p)RR siRNA, but not by the ANG II receptor antagonist, saralasin. When angiotensinogen was also added to cultured MCs with inactive native or mutant prorenin, PAI-1 and fibronectin were further increased significantly compared with prorenin or mutant prorenin alone. This effect was blocked partially by treatment with (p)RR siRNA or saralasin. We conclude that prorenin binds the (p)RR on renal MCs and is activated nonproteolytically. This activation leads to increased expression of PAI-1 and transforming growth factor-β(1) via ANG II-independent and ANG II-dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may play a role in the development of diabetic nephropathy.  相似文献   

6.
Cox and Bürk (Eur. J. Biochem., 1991) reported the partial characterization of Milk Growth Factor (MGF) which stimulated the migration of fibroblasts. We have fractionated the partially purified sample by RP-HPLC and obtained the separation of two peaks of activity. The two active components were isolated as pure MGF-a and MGF-b by RP-HPLC and preparative SDS-PAGE. The purified MGF-a, consisting of a single band by gel electrophoresis and a single peak on an HPLC reversed-phase C-4 column, has the same specific activity as TGF-2 in the fibroblast migration assay. MGF-a was digested by endoprotease Asp-N and the cleaved peptides were analyzed by Edman degradation and plasma desorption mass spectrometry (PDMS). The whole sequence of MGF-a determined by automated sequenator and PDMS of S-pyridylethylated protein and selected fragments was found to be identical to that of TGF-2. MGF-b protein mixture separated by SDS-PAGE was electrophoretically transferred onto a Biometra Glassybond membrane, and the blotted MGF-b protein was directly sequenced on an automated sequenator. The identified 29 amino acids sequence of MGF-b was identical to the amino-terminal sequence of TGF-1. Our study demonstrates that MGF is composed of both TGF-1 and TGF-2. TGF-2 (85%) is the predominant form.  相似文献   

7.
8.
Podocyte loss has been reported to relate to disease severity and progression in IgA nephropathy (IgAN). However, the underlying mechanism for its role in IgAN remain unclear. Recent evidence has shown that IgA1 complexes from patients with IgAN could activate mesangial cells to induce soluble mediator excretion, and further injure podocytes through mesangial-podocytic cross-talk. In the present study, we explored the underlying mechanism of mesangial cell-induced podocyte loss in IgAN. We found that IgA1 complexes from IgAN patients significantly up-regulated the expression of CXCL1 and TGF-β1 in mesangial cells compared with healthy controls. Significantly higher urinary levels of CXCL1 and TGF-β1 were also observed in patients with IgAN compared to healthy controls. Moreover, IgAN patients with higher urinary CXCL1 and TGF-β1 presented with severe clinical and pathological manifestations, including higher 24-hour urine protein excretion, lower eGFR and higher cresentic glomeruli proportion. Further in vitro experiments showed that increased podocyte death and reduced podocyte adhesion were induced by mesangial cell conditional medium from IgAN (IgAN-HMCM), as well as rhCXCL1 together with rhTGF-β1. In addition, the over-expression of CXCR2, the receptor for CXCL1, by podocytes was induced by IgAN-HMCM and rhTGF-β1, but not by rhCXCL1. Furthermore, the effect of increased podocyte death and reduced podocyte adhesion induced by IgAN-HMCM and rhCXCL1 and rhTGF-β1 was rescued partially by a blocking antibody against CXCR2. Moreover, we observed the expression of CXCR2 in urine exfoliated podocytes in IgAN patients. Our present study implied that IgA1 complexes from IgAN patients could up-regulate the secretion of CXCL1 and TGF-β1 in mesangial cells. Additionally, the synergistic effect of CXCL1 and TGF-β1 further induced podocyte death and adhesion dysfunction in podocytes via CXCR2. This might be a potential mechanism for podocyte loss observed in IgAN.  相似文献   

9.
Weaning stress caused marked changes in intestinal structure and function. Transforming growth factor-β1 (TGF-β1) and canonical Smads signaling pathway are suspected to play an important regulatory role in post-weaning adaptation of the small intestine. In the present study, the intestinal morphology and permeability, developmental expressions of tight junction proteins and TGF-β1 in the intestine of piglets during the 2 weeks after weaning were assessed. The expressions of TGF-β receptor I/II (TβRI, TβRII), smad2/3, smad4 and smad7 were determined to investigate whether canonical smads signaling pathways were involved in early weaning adaption process. The results showed that a shorter villus and deeper crypt were observed on d 3 and d 7 postweaning and intestinal morphology recovered to preweaning values on d 14 postweaning. Early weaning increased (P<0.05) plasma level of diamine oxidase (DAO) and decreased DAO activities (P<0.05) in intestinal mucosa on d 3 and d 7 post-weaning. Compared with the pre-weaning stage (d 0), tight junction proteins level of occludin and claudin-1 were reduced (P<0.05) on d 3, 7 and 14 post-weaning, and ZO-1 protein was reduced (P<0.05) on d 3 and d 7 post-weaning. An increase (P<0.05) of TGF-β1 in intestinal mucosa was observed on d 3 and d 7 and then level down on d 14 post-weaning. Although there was an increase (P<0.05) of TβR II protein expression in the intestinal mucosa on d3 and d 7, no significant increase of mRNA of TβRI, TβRII, smad2/3, smad4 and smad7 was observed during postweaning. The results indicated that TGF-β1 was associated with the restoration of intestinal morphology and barrier function following weaning stress. The increased intestinal endogenous TGF-β1 didn''t activate the canonical Smads signaling pathway.  相似文献   

10.
Gold nanoparticles (AuNPs) possess considerable biocompatibility and therefore gaining more attention for their biomedical applications. Previous studies have shown the transient increase in pro-inflammatory cytokines expression in different organs of rats and mice exposed to AuNPs. Structural changes in the spleen of mice treated with AuNPs have also been reported. This investigation was aimed to study the immunostaining of IL-1β, IL-6 and TNF-α in mice treated with different sizes of AuNPs. The animals were divided into 7 groups of 4 animals in each group. One group received saline and served as control. Two sets of three groups were treated with 5 nm, 20 nm and 50 nm diameter AuNPs. One set was sacrificed on day 1 and the other on day 7 following the AuNPs injections. Spleens were dissected out and promptly fixed in formalin for 3 days and then processed for IL-1β, IL-6 and TNF-α immunostaining using target-specific antibodies. The immunoreactivities of IL-1β and IL-6 were increased with the increase of AuNP size. The immunostaining of IL-1β in spleen of 20 nm AuNP treated mice was subsequently decreased on day 7 whereas it persisted in 50 nm AuNP group. The increase in the immunoreactivity of IL-6 on day 1 was decreased on day 7 in the spleens of mice treated with 20 nm or 50 nm AuNPs. The immunostaining of TNF-α was found to be negative in all the treatment groups. In conclusion, the size of AuNPs plays an important role in the expression of proinflammatory cytokines in mouse spleen; small size (5 nm) AuNPs caused minimal effect, whereas larger (50 nm) AuNPs produced intense immunostaining.  相似文献   

11.
Several in vitro studies have previously demonstrated that the addition of TGF-β to aortic smooth muscle cells or skin fibroblasts stimulates elastin synthesis. It is not clear however whether, in vivo, TGF-β participates in the regulation of elastin synthesis, especially in physiological conditions. The aim of our study was to explore the localization of elastin mRNA and TGF-β1 in the rat thoracic aorta (an elastic artery) and caudal artery (a muscular artery). Elastin mRNA was localized by in situ hybridization and quantified using Northern blot analysis. TGF-β1 was detected using immunohistochemistry. The study was carried out as a function of age (rats of 3, 10, 20, and 30 months). We observed that TGF-β1 immunoreactivity is present predominantly, but not exclusively, at the sites of elastin synthesis as determined by elastin mRNA detection: in smooth muscle cells in the aorta and in endothelial cells in the caudal artery. The ability of exogenously added TGF-β1 (0.001–10 ng/ml) to modulate the steady-state levels of elastin mRNA in primary cultures of endothelial cells, smooth muscle cells, and fibroblasts isolated from the thoracic aorta was also studied. At the highest concentration used, elastin mRNA levels increased 5-fold in endothelial cells and 11-fold in smooth muscle cells. The demonstration that TGF-β1 immunoreactivity is present at the sites of elastin synthesis in the thoracic aorta and in the caudal artery and the observation that TGF-β1 induces an increase in elastin mRNA levels in cultured endothelial cells and smooth muscle cells suggest that TGF-β1 may be implicated, at least in part, in the physiological regulation of elastin gene expression.  相似文献   

12.
We investigated the role of TGF-β1 and TNF-α in mediating the effect of IL-1β in activating proMMP-9 and proMMP-2, and the involvement of an aprotinin sensitive protease in this scenario in bovine pulmonary artery smooth muscle cells. IL-1β induces TGF-β1 mediated stimulation of 92 kDa proMMP-9 and 72 kDa proMMP-2 mRNA and protein expression; whereas, the elevated level of TNF-α promotes activation of proMMP-9 and proMMP-2. Interestingly, TNF-α induced activation of proMMP-9 appeared to be mediated via a 43 kDa aprotinin sensitive protease. TNF-α inhibited aprotinin and TIMP-1 mRNA and protein expression, which apparently facilitated the proteolytic conversion of proMMP-9 to MMP-9 with the involvement of the aprotinin sensitive protease. The aprotinin sensitive protease did not activate proMMP-2 under IL-1β stimulation, albeit a marked inhibition of TIMP-2 mRNA and protein expression were elicited by TNF-α. Thus, IL-1β induced stimulation of the two progelatinases occurs via different mechanisms.  相似文献   

13.
Recent evidence indicates that glial cell line-derived neurotrophic factor (GDNF) may influence microglial survival, proliferation, and activation, but this has not yet been tested on isolated primary microglia. We compared the effects of individual and combined application of 10 ng/ml GDNF and 1 ng/ml transforming growth factor-beta1 (TGF-beta1) on total cell number, 5-bromo-2'-deoxyuridine (BrdU) incorporation, DNA nick-end labelling (TUNEL staining), and nitrite and lactate dehydrogenase (LDH) secretion in serum-free cultures of primary rat microglia. GDNF as well as TGF-beta1 enhanced the total number of lectin-positive cells and decreased the number of TUNEL-positive nuclei, while no effect on proliferation was observed. Both factors suppressed the secretion of nitrite during the first 4 days of culturing, and GDNF but not TGF-beta1 reduced the secretion of LDH in 2-week-old cultures. These findings suggest that GDNF and TGF-beta1 support survival of primary microglia in vitro.  相似文献   

14.
Mechanical stress plays a key role in bone remodeling. Previous studies showed that loading of mechanical stretch induces a rapid Ca2+ influx and subsequent activation of stress-activated protein kinase pathways in osteoblasts. However, the activation mechanism and its significance in bone remodeling have not been fully elucidated. Here we show that TAK1 MAPKKK was activated by cyclic stretch loading of MC3T3-E1 cells. Knockdown of TAK1 attenuated the stretch-induced activation of JNK, p38, and NF-κB. Extracellular (EGTA) or intracellular (BAPTA/AM) Ca2+ chelator prevented the stretch-induced activation of TAK1. Activation of TAK1 and its associated downstream signaling pathways were also suppressed by CaMKII inhibitors (KN-93 and KN-62). Furthermore, TAK1-mediated downstream pathways cooperatively induced the expression of IL-6 mRNA in the stretched MC3T3-E1 cells. We also confirmed that TAK1 mediates cyclic stretch-induced IL-6 protein synthesis in the cells using immunoblotting and ELISA. Finally, stretch loading of murine primary osteoblasts induced the expression of IL-6 mRNA via TAK1. Collectively, these data suggest that stretch-dependent Ca2+ influx activates TAK1 via CaMKII, leading to the enhanced expression of IL-6 through JNK, p38, and NF-κB pathways in osteoblasts.  相似文献   

15.
Summary Alpha-smooth muscle actin is currently considered a marker of smooth muscle cell differentiation. However, during various physiologic and pathologic conditions, it can be expressed, sometimes only transiently, in a variety of other cell types, such as cardiac and skeletal muscle cells, as well as in nonmuscle cells. In this report, the expression of actin mRNAs in cultured rat capillary endothelial cells (RFCs) and aortic smooth muscle cells (SMCs) has been studied by Northern hybridization in two-dimensional cultures seeded on individual extracellular matrix proteins and in three-dimensional type I collagen gels. In two-dimensional cultures, in addition to cytoplasmic actin mRNAs which are normally found in endothelial cell populations, RFCs expressed α-smooth muscle (SM) actin mRNA at low levels. α-SM actin mRNA expression is dramatically enhanced by TGF-β1. In addition, double immunofluorescence staining with anti-vWF and anti-α-SM-1 (a monoclonal antibody to α-SM actin) shows that RFCs co-express the two proteins. In three dimensional cultures, RFCs still expressed vWF, but lost staining for α-SM actin, whereas α-SM actin mRNA became barely detectable. In contrast to two-dimensional cultures, the addition of TGF-β1 to the culture media did not enhance α-SM actin mRNA in three-dimensional cultures, whereas it induced rapid capillary tube formation. Actin mRNA expression was modulated in SMCs by extracellular matrix components and TGF-β1 with a pattern very different from that of RFCs. Namely, the comparison of RFCs with other cell types such as bovine aortic endothelial cells shows that co-expression of endothelial and smooth muscle cell markers is very unique to RFCs and occurs only in particular culture conditions. This could be related to the capacity of these microvascular endothelial cells to modulate their phenotype in physiologic and pathologic conditions, particularly during angiogenesis, and could reflect different embryologic origins for endothelial cell populations. Supported by a Post-Doctoral Fellowship from the Swiss National Science Foundation (OK) and grant HL-RO1-28373 (JAM) from the Department of Human Services, Public Health Service, Washington, D.C.  相似文献   

16.
Extensive extracellular matrix remodeling of the vein wall is involved in varicose veins pathogenesis. This process is controlled by numerous factors, including peptide growth factors. The aim of the study was to evaluate influence of thrombophlebitis on TGF-β1 and its signaling pathway in the vein wall. TGF-β1 mRNAlevels, growth factor content and its expression were evaluated by RT-PCR, ELISA, and western blot methods, respectively, in the walls of normal veins, varicose veins and varicose veins complicated by thrombophlebitis. Western blot analysis was used to assess TGF-β receptor type II (TGF-β RII) and p-Smad2/3 protein expression in the investigated material. Unchanged mRNA levels of TGF-β1, decreased TGF-β1 content, as well as decreased expression of latent and active forms of TGF-β1 were found in varicose veins. Increased expression of TGF-β RII and p-Smad2/3 were found in varicose veins. Thrombophlebitis led to increased protein expression of the TGF-β1 active form and p-Smad2/3 in the vein wall compared to varicose veins. TGF-β1 may play a role in the disease pathogenesis because of increased expression and activation of its receptor in the wall of varicose veins. Thrombophlebitis accelerates activation of TGF-β1 and activity of its receptor in the varicose vein wall.  相似文献   

17.
The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC and FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype.  相似文献   

18.
We and others have recently described the antagonistic role of Bone morphogenetic protein-7 (BMP-7) in TGF-β signalling and myogenic differentiation. To specify the underlying mechanism(s), we here analysed the expression and function of the individual components mediating TGF-β1 and BMP-7 responses. We found that BMP-7 at a concentration of 25 ng/ml induces signalling exclusively via ALK2 and ALK3 leading to the activation of Smad1 and Smad5 and subsequent expression of Id proteins. In contrast, low doses of TGF-β1 (0.1 ng/ml) lead to an exclusive activation of ALK5 and phosphorylation of Smad2 and Smad3 that regulate specific target genes including connective tissue growth factor (CTGF). CTGF is rapidly induced by TGF-β1 already 1h after stimulation and reduced by BMP-7 application. Smad1/Smad5 or Id1/2 overexpression reduced the TGF-β1-mediated expression of CTGF. However, although siRNA-mediated knock down of Alk2/3 or Smad1/5 counteracts the BMP-7 effect on basal CTGF expression there was no consistent reversion of the observed BMP-7 effect on TGF-β1-mediated CTGF expression. Moreover, ALK5 inhibition using the SB431542 inhibitor significantly affected CTGF expression only at later time points whereas ERK1/2 inhibition completely abrogated CTGF expression. These findings point towards a regulatory role of BMP-7 that relies on modulation of Mitogen-activated protein kinases rather than mechanisms that are exclusively driven by differential Smad activation.  相似文献   

19.
It is well established that reciprocal modulation exists between the central nervous system and immune system. Interleukin (IL)-1β, a proinflammatory cytokine secreted at early stage of immune challenge, has been recognized as one of the informational molecules in immune-to-brain communication. However, how this large molecule is transmitted to the brain is still unknown. In recent years it has been reported that the cranial nerves, especially the vagus, may play a pivotal role in this regard. It is proposed that IL-1β may bind to its corresponding receptors located in the glomus cells of the vagal paraganglia and then elicit action potentials in the nerve. The existence of IL-1 receptor type I (IL-1RI) in the vagal paraganglia has been shown. The carotid body, which is the largest peripheral chemoreceptive organ, is also a paraganglion. We hypothesize that the carotid body might play a role similar to the vagal paraganglia because they are architectonically similar. Recently we verified the presence of IL-1RI in the rat carotid body and observed increase firing in the carotid sinus nerve following IL-1β stimulation. The aim of this study was to observe the changes in expression of IL-1RI and tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, in the glomus cells of the rat carotid body following intraperitoneal injection of IL-1β. The radioimmunoassay result showed that the blood IL-1β level was increased after the intraperitoneal injection of rmIL-1β (750 ng/kg) from 0.48 ± 0.08 to 0.78 ± 0.07 ng/ml (P < 0.05). Immunofluorescence and Western blot analysis showed that the expression of IL-1RI and TH in the rat carotid body was increased significantly following peritoneal IL-1β stimulation. In addition, double immunofluorescence labeling for TH and PGP9.5, a marker for glomus cells, or TH immunofluoresence with hematoxylin-eosin (HE) counterstaining revealed that a considerable number of glomus cells did not display TH immunoreactivity. These data provide morphological evidence for the response of the carotid body to proinflammatory cytokine stimulation. The results also indicate that not all of the glomus cells express detectable TH levels either in normal or in some abnormal conditions. Xi-Jing Zhang and Xi Wang are co-first authors.  相似文献   

20.
  • 1.1. Comparative studies of EGF, TGF-α, and TGF-βl action on the synthesis of DNA and cellular proteins in rat L6 myogenic cells and fetal bovine myoblasts demonstrated considerable differences between particular growth factors, dependent on dose and target cells.
  • 2.2. Among examined growth factors only EGF exerted mitostimulatory action, more pronounced at lower concentrations. EGF, progressively with dose, stimulated protein synthesis much more effectively in fetal bovine myoblasts than in L6 cells.
  • 3.3. The dynamics of stimulation of protein synthesis by TGF-α was greater than by EGF in both examined types of cell cultures.
  • 4.4. The maximal response of fetal bovine myoblasts to TGF-α in a concentration of 100 ng/ml reached 370%, whereas EGF in a 10 times higher concentration stimulated protein synthesis only to 123% of control.
  • 5.5. In contrast to EGF, TGF-α significantly inhibits DNA synthesis. Inhibition of the mitogenic response with simultaneous stimulation of protein synthesis by TGF-α may indicate changes toward cell differentiation.
  • 6.6. TGF-β 1 in smallest concentration inhibits both DNA and protein synthesis. The suppressive action of TGF-β 1 was more distinct in fetal bovine myoblasts than in the L6 cell line.
  • 7.7. Increasing concentrations of TGF-β l diminished its inhibitory effect, even leading to stimulation of protein synthesis at higher doses in L6 myoblasts.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号