首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide 3-kinase (PI3K) is a critical component of the signaling pathways that control the activation of platelets. Here we have examined the regulation of protein kinase B (PKB), a downstream effector of PI3K, by the platelet collagen receptor glycoprotein (GP) VI and thrombin receptors. Stimulation of platelets with collagen or convulxin (a selective GPVI agonist) resulted in PI3K-dependent, and aggregation independent, Ser(473) and Thr(308) phosphorylation of PKBalpha, which results in PKB activation. This was accompanied by translocation of PKB to cell membranes. The phosphoinositide-dependent kinase PDK1 is known to phosphorylate PKBalpha on Thr(308), although the identity of the kinase responsible for Ser(473) phosphorylation is less clear. One candidate that has been implicated as being responsible for Ser(473) phosphorylation, either directly or indirectly, is the integrin-linked kinase (ILK). In this study we have examined the interactions of PKB, PDK1, and ILK in resting and stimulated platelets. We demonstrate that in platelets PKB is physically associated with PDK1 and ILK. Furthermore, the association of PDK1 and ILK increases upon platelet stimulation. It would therefore appear that formation of a tertiary complex between PDK1, ILK, and PKB may be necessary for phosphorylation of PKB. These observations indicate that PKB participates in cell signaling downstream of the platelet collagen receptor GPVI. The role of PKB in collagen- and thrombin-stimulated platelets remains to be determined.  相似文献   

2.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ligand for the ubiquitous, intracellular aryl hydrocarbon receptor (AhR), up-regulates the actin-modulating protein adseverin in mouse lymphoid tissues, a response that may be correlated to the immunotoxicity of TCDD. Here, by using chimeric mice with TCDD-responsive (AhR(+/+)) hematopoietic cells and TCDD-unresponsive (AhR(minus sign/minus sign)) thymic stroma, or the reverse, we show that TCDD-induced expression of adseverin in thymus is dependent on AhR expression in hematopoietic cells but not in stroma. The use of fetal thymic organ cultures also indicates that TCDD-induced expression of adseverin is confined to the thymocytes. The thymic stroma showed no induction of adseverin expression after TCDD exposure, although TCDD clearly activated the AhR in these cells, as indicated by the induction of CYP1A1. Adseverin was not induced in the thymus of normal adult C57BL/6 mice exposed to beta-estradiol or dexamethasone, two other agents, which also cause thymic atrophy. This further supports that adseverin induction is a specific gene regulatory effect by TCDD on thymocytes.  相似文献   

3.
The platelet collagen receptor glycoprotein VI (GPVI) is structurally homologous to multisubunit immune receptors and signals through the immune receptor adaptor Fc Rgamma. Multisubunit receptors are composed of specialized subunits thought to be dedicated exclusively to ligand binding or signal transduction. However, recent studies of the intracellular region of GPVI, a ligand-binding subunit, have suggested the existence of protein-protein interactions that could regulate receptor signaling. In the present study we have investigated the signaling role of the GPVI intracellular domain by stably expressing GPVI mutants in RBL-2H3 cells, a model system that accurately reproduces the GPVI signaling events observed in platelets. Studies of mutant GPVI receptor protein-protein interaction and calcium signaling reveal the existence of discrete domains within the receptor's intracellular tail that mediate interaction with Fc Rgamma, calmodulin, and Src family tyrosine kinases. These receptor interactions are modular and mediated by non-overlapping regions of the receptor transmembrane and intracellular domains. GPVI signaling requires all three of these domains as receptor mutants able to couple to only two interacting proteins exhibited severe signaling defects despite normal surface expression. Our results demonstrate that the ligand-binding subunit of the GPVI-Fc Rgamma receptor participates directly in receptor signaling by interacting with downstream signaling molecules other than Fc Rgamma through an adaptor-like mechanism.  相似文献   

4.
The glycoprotein VI (GPVI).Fc receptor gamma-chain (FcRgamma-chain) complex is the major activation receptor for collagen on platelets. GPVI cross-linking mediates activation through tyrosine phosphorylation of an ITAM (immunoreceptor tyrosine-based activation motif) in the FcR gamma-chain by Src family kinases. It has been previously shown that a transmembrane arginine and the cytoplasmic domain of GPVI are required for association with the FcR gamma-chain in immortalized cell lines. In this study, we have delineated the regions in the GPVI tail that promote binding to FcR gamma-chain and mediate functional responses to the snake venom convulxin by reconstitution of mutant forms of GPVI in RBL-2H3 cells. Sequential truncation of the cytoplasmic tail of GPVI revealed a major role for the basic region and a minor role for the juxtamembrane six amino acids in the association with FcR gamma-chain and functional responses to convulxin. Analysis of selective deletions in the GPVI tail supported this conclusion. In addition, we show that the proline-rich domain is required for optimal Ca2+ release, whereas it is dispensable for FcR gamma-chain association.  相似文献   

5.
Platelet activation by collagen relies on the interaction of the receptor glycoprotein VI (GPVI) with collagen helices. We have previously generated two recombinant single chain human antibodies (scFvs) to human GPVI. The first, 10B12, binds to the collagen-binding site on the apical surface between the two immunoglobulin-like domains (D1D2) of the receptor and so directly inhibits GPVI function. The second, 1C3, binds D1D2 independently of 10B12 and has been shown to have a more subtle effect on platelet responses to collagen. Here we have shown that 1C3 potentiates the effect of 10B12 on platelet aggregation induced by collagen and cross-linked collagen-related peptide (CRP-XL). We investigated this by measuring the effect of both scFvs on the binding of D1D2 to immobilized collagen and CRP. As expected, 10B12 completely inhibited binding of GPVI to each ligand in a dose-dependent manner. However, 1C3 inhibited only a proportion of GPVI binding to its ligands, implying that it interferes with another aspect of ligand recognition by GPVI. To further understand the mode of inhibition, we used a unique set of CRPs in which the content of critical glycine-proline-hydroxyproline (GPO) triplets was varied in relation to an "inert" scaffold sequence of GPP motifs. We observed that a stepwise increase in D1D2 binding with (GPO)(2) content was blocked by 1C3. Together these results indicate that 1C3 inhibits clustering of the immunoglobulin-like domains of GPVI on collagen/CRPs, a conclusion that is supported by mapping the 1C3 epitope to the region including isoleucine 148 in D2.  相似文献   

6.
Expression and function of leptin and its receptor in mouse mammary gland   总被引:4,自引:0,他引:4  
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lacta-tion-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

7.
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lactation-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

8.
R Jander  D Troyer  J Rauterberg 《Biochemistry》1984,23(16):3675-3681
The 140 000-dalton collagenous glycoprotein (CGP) from calf aorta and ligament characterized by Gibson & Cleary (1982) [Gibson, M.A., & Cleary, E.G. (1982) Biochem. Biophys. Res. Commun. 105, 1288-1295] has been studied. In the electron microscope, rotary-shadowed CGP molecules appear similar to the dimers of type VI collagen (short-chain collagen, intima collagen) described by other authors [Furthmayr, H., Wiedemann, H., Timpl, R., Odermatt, E., & Engel, J. (1983) Biochem. J. 211, 303-311] except that they have larger globular domains. As shown by gel electrophoresis, pepsin treatment of CGP at 4 degrees C either before or after reduction releases polypeptide chains corresponding in size to those of type VI collagen. Electron microscopic examination shows that pepsin digestion of nonreduced CGP removes the outer globular domains, reduces the size of the inner ones, and separates the paired central strands. The residual structures look like type VI collagen dimers. When intact CGP is reduced, monomers with two large globular ends are obtained. Pepsin digestion of monomers removes most or all of both globular domains. In immunoblots, CGP and its pepsin-derived fragments react with antibodies directed against type VI collagen. The results indicate that type VI collagen is an integral component of CGP.  相似文献   

9.
Recent studies implicate the collagen receptor, glycoprotein VI (GPVI) in activation of platelet 12-lipoxygenase (p12-LOX). Herein, we show that GPVI-stimulated 12-hydro(peroxy)eicosatetraenoic acid (H(P)ETE) synthesis is inhibited by palmityl trifluromethyl ketone or oleyloxyethylphosphocholine , but not bromoenol lactone, implicating secretory and cytosolic, but not calcium-independent phospholipase A2 (PLA2) isoforms. Also, following GPVI activation, 12-LOX co-immunoprecipitates with both cytosolic and secretory PLA2 (sPLA2). Finally, venoms containing sPLA2 acutely activate p12-LOX in a dose-dependent manner. This study shows that platelet 12-H(P)ETE generation utilizes arachidonate substrate from both c- and sPLA2 and that 12-LOX functionally associates with both PLA2 isoforms.  相似文献   

10.
11.
We have cloned the platelet collagen receptor glycoprotein (GP) VI from a human bone marrow cDNA library using rapid amplification of cDNA ends with platelet mRNA to complete the 5' end sequence. GPVI was isolated from platelets using affinity chromatography on the snake C-type lectin, convulxin, as a critical step. Internal peptide sequences were obtained, and degenerate primers were designed to amplify a fragment of the GPVI cDNA, which was then used as a probe to screen the library. Purified GPVI, as well as Fab fragments of polyclonal antibodies made against the receptor, inhibited collagen-induced platelet aggregation. The GPVI receptor cDNA has an open reading frame of 1017 base pairs coding for a protein of 339 amino acids including a putative 23-amino acid signal sequence and a 19-amino acid transmembrane domain between residues 247 and 265. GPVI belongs to the immunoglobulin superfamily, and its sequence is closely related to FcalphaR and to the natural killer receptors. Its extracellular chain has two Ig-C2-like domains formed by disulfide bridges. An arginine residue is found in position 3 of the transmembrane portion, which should permit association with Fcgamma and its immunoreceptor tyrosine-based activation motif via a salt bridge. With 51 amino acids, the cytoplasmic tail is relatively long and shows little homology to the C-terminal part of the other family members. The ability of the cloned GPVI cDNA to code for a functional platelet collagen receptor was demonstrated in the megakaryocytic cell line Dami. Dami cells transfected with GPVI cDNA mobilized intracellular Ca(2+) in response to collagen, unlike the nontransfected or mock transfected Dami cells, which do not respond to collagen.  相似文献   

12.
The Src homology (SH)2 domain-containing protein-tyrosine phosphatase SHP-1 is tyrosine phosphorylated in platelets in response to the glycoprotein VI (GPVI)-selective agonist collagen-related peptide (CRP), collagen, and thrombin. Two major unidentified tyrosine-phosphorylated bands of 28 and 32 kDa and a minor band of 130 kDa coprecipitate with SHP-1 in response to all three agonists. Additionally, tyrosine-phosphorylated proteins of 50-55 and 70 kDa specifically associate with SHP-1 following stimulation by CRP and collagen. The tyrosine kinases Lyn, which exists as a 53 and 56-kDa doublet, and Syk were identified as major components of these bands, respectively. Kinase assays on SHP-1 immunoprecipitates performed in the presence of the Src family kinase inhibitor PP1 confirmed the presence of a Src kinase in CRP- but not thrombin-stimulated cells. Lyn, Syk, and SLP-76, along with tyrosine-phosphorylated 28-, 32-, and 130-kDa proteins, bound selectively to a glutathione S-transferase protein encoding the SH2 domains of SHP-1, suggesting that this is the major site of interaction. Platelets isolated from motheaten viable mice (mev/mev) revealed the presence of a heavily tyrosine-phosphorylated 26-kDa protein that was not found in wild-type platelets. CRP-stimulated mev/mev platelets manifested hypophosphorylation of Syk and Lyn and reduced P-selectin expression relative to controls. These observations provide evidence of a functional role for SHP-1 in platelet activation by GPVI.  相似文献   

13.
The primary amino acid sequence of the carboxyl-terminal portion of the alpha 3 chain of chick type VI collagen as deduced from the nucleotide sequence is reported. This carboxyl-terminal segment is not present in the alpha 1 and alpha 2 chains of chick type VI collagen and is specific for a mosaic region with extensive similarities to several other proteins. This unique segment, beginning with a stretch (73 residues) very rich in serine and threonine, is preceded by sequences analogous to the platelet glycoprotein Ib. This region is followed by one segment that closely resembles the type III domains of fibronectin. At the end of the sequence, there is a 58-residue motif very similar to sequences characteristic of the Kunitz-type proteinase inhibitors. The present findings and our recent observation that the alpha 3(VI) chain contains 11 repeats similar to type A repeats of von Willebrand factor raise interesting questions about the peculiar mosaic structure and the multiple functions that this unique collagen might play in growth and remodeling of connective tissues.  相似文献   

14.
Dopamine transporters of bovine and rat striata were identified by their specific [3H]cocaine binding and cocaine-sensitive [3H]dopamine [( 3H]DA) uptake. Both binding and uptake functions of bovine striatal transporters were potentiated by lectins. Concanavalin A (Con A) increased the velocity but did not change the affinity of the transporter for DA; however, it increased its affinity for cocaine without changing the number of binding sites. This suggests that the DA transporter is a glycoprotein and that Con A action on it produces conformational changes. Inorganic and organic mercury reagents inhibited both [3H]DA uptake and [3H]cocaine binding, though they were all more potent inhibitors of the former. n-Ethylmaleimide inhibited [3H]DA uptake totally but [3H]cocaine binding only partially. Also, n-pyrene maleimide had differential effects on uptake and binding, inhibiting uptake and potentiating binding. [3H]DA uptake was not affected by mercaptoethanol up to 100 mM, whereas [3H]cocaine binding was inhibited by concentrations above 10 mM. On the other hand, both uptake and binding were fairly sensitive to dimercaprol (less than 1 mM). The effects of all these sulfhydryl reagents suggest that the DA transporter has one or more thiol group(s) important for both binding and uptake activities. The Ellman reagent and dithiopyridine were effective inhibitors of uptake and binding only at fairly high concentration (greater than 10 mM). Loss of activity after treatment with the dithio reagents may be a result of reduction of a disulfide bond, which may affect the transporter conformation.  相似文献   

15.
Collagen VI assembly is unique within the collagen superfamily in that the alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains associate intracellularly to form triple helical monomers, and then dimers and tetramers, which are secreted from the cell. Secreted tetramers associate end-to-end to form the distinctive extracellular microfibrils that are found in virtually all connective tissues. Although the precise protein interactions involved in this process are unknown, the N-terminal globular regions, which are composed of multiple copies of von Willebrand factor type A-like domains, are likely to play a critical role in microfibril formation, because they are exposed at both ends of the tetramers. To explore the role of these subdomains in collagen VI intracellular and extracellular assembly, alpha 3(VI) cDNA expression constructs with sequential N-terminal deletions were stably transfected into SaOS-2 cells, producing cell lines that express alpha 3(VI) chains with N-terminal globular domains containing modules N9-N1, N6-N1, N5-N1, N4-N1, N3-N1, or N1, as well as the complete triple helix and C-terminal globular domain (C1-C5). All of these transfected alpha 3(VI) chains were able to associate with endogenous alpha 1(VI) and alpha 2(VI) to form collagen VI monomers, dimers, and tetramers, which were secreted. Importantly, cells that expressed alpha 3(VI) chains containing the N5 subdomain, alpha 3(VI) N9-C5, N6-C5, and N5-C5, formed microfibrils and deposited a collagen VI matrix. In contrast, cells that expressed the shorter alpha 3(VI) chains, N4-C5, N3-C5, and N1-C5, were severely compromised in their ability to form end-to-end tetramer assemblies and failed to deposit a collagen VI matrix. These data demonstrate that the alpha 3(VI) N5 module is critical for microfibril formation, thus identifying a functional role for a specific type A subdomain in collagen VI assembly.  相似文献   

16.
Folding of cathepsin S, like other cathepsin L-like proteases, depends on its proregion. The major part of the proregion forms a small domain distal from the catalytic centre, suggesting function(s) beyond active-site shielding. Using an optimised in vitro trans-refolding assay, we compared reactivation of denatured cathepsin S by the genuine propeptide, wild-type and ten selected mutants. Including structural data and binding constants, we identified the prodomain core and the hairpin region to be important for the foldase function.  相似文献   

17.
Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the “classical” α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders.  相似文献   

18.
Qi ZM  Wang J  Sun ZR  Ma FM  Zhang QR  Hirose S  Jiang Y 《Immunogenetics》2005,57(9):697-702
Several studies suggest that interleukin (IL)-10 pathway is involved in murine lupus, while no linkage of IL-10 gene polymorphism to disease susceptibility has been reported in studies with lupus-prone mice. Since IL-10 functions through the specific IL-10 receptor alpha (IL-10RA) chain and the IL-10RA gene (Il10ra) is linked to the susceptibility loci of atopic dermatitis and Crohn's disease identified using mouse models, we supposed that IL-10RA might be involved in murine lupus. By flow cytometry analysis, we found that NZW mice, one of the parental strains of lupus-prone (NZB×NZW) F1 mice, express extremely low levels of IL-10RA compared with NZB mice, the other parental strain, and the healthy BALB/c and C57BL/6 mice. Sequence analyses of Il10ra cDNA of NZW mice showed multiple nucleotide mutations compared with that of NZB and C57BL/6 strains, some of which would result in amino acid substitutions in the IL-10RA protein. Lupus-prone MRL mice shared the same polymorphism with NZW. Analyses using (NZB×NZW) F1×NZB backcross mice showed that high serum levels of IgG antichromatin antibodies were regulated by a combinatorial effect of the NZW Il10ra allele and a heterozygous genotype for Tnfa microsatellite locus. Our data suggest that the polymorphic NZW-type Il10ra may be involved in the pathologic production of antichromatin antibodies and, if so, may contribute in part to the development of systemic lupus erythematosus as one susceptibility allele. The Il10ra polymorphism data reported in this paper have been submitted to the Mouse Genome Informatics database and have been assigned the accession number MGI: 3528086.  相似文献   

19.
20.
The identity and signal pathways of a platelet nonintegrin receptor for type I collagen, 65 kDa, are not established. In this investigation, we have examined whether there is a difference in the signal transduction pathways between the 65-kDa protein and glycoprotein VI (GP VI). Results from this study show that these two proteins are different based on the following facts. First, the anti-65-kDa antibody does not precipitate GP VI and vice versa. Second, the Fc receptor (FcR) gamma chain which associates with GP VI after exposure to collagen does not associate with the 65-kDa protein. Third, tyrosine phosphorylation of the FcR gamma chain was obtained by Fab fragments of anti-GP VI but not by anti-65 kDa. These results suggest that the signal transduction pathway of the platelet receptors for the 65-kDa protein and GP VI are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号