首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the regulation of phospholipase D (PLD) activity by guanine nucleotides and Ca2+ in cells of the NG108-15 neuroblastoma X glioma line that were permeabilized with digitonin. The nonhydrolyzable GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) caused a nearly sixfold increase (EC50 = 3 microM) in production of [3H]phosphatidylethanol (specific product of the PLD transphosphatidylation reaction). Other GTP analogues were less effective than GTP gamma S, and guanosine-5'-O-(2-thiodiphosphate) inhibited PLD activation by GTP gamma S. Both basal and GTP gamma S-stimulated PLD activities were potentiated by MgATP and Mg2+. Adenosine-5'-O-(3-thiotriphosphate) and ADP also potentiated the effect of GTP gamma S, but non-phosphorylating analogues of ATP had no such effect. The activation of PLD by GTP gamma S did not require Ca2+ and was independent of free Ca2+ ions up to a concentration of 100 nM (resting intracellular concentration). Higher Ca2+ concentrations (greater than or equal to 1 microM) completely inhibited PLD activation by GTP gamma S. It is concluded that elevated intracellular Ca2+ concentrations may negatively modulate PLD activation by a guanine nucleotide-binding protein, thus affecting receptor-PLD coupling in neural-derived cells.  相似文献   

2.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

3.
The addition of either Ca2+ or guanosine 5'-O-3-(thiotriphosphate), GTP gamma S, to digitonin-permeabilized rat pheochromocytoma PC12 cells stimulates norepinephrine release. Unlike Ca(2+)-stimulated release, there is a delay between the time of addition of GTP gamma S to digitonin-permeabilized PC12 cells and stimulation of norepinephrine release. Preincubation of the permeabilized cells in the absence of Mg2+ eliminates this lag and increases the initial rate of GTP-gamma S-stimulated norepinephrine secretion. This suggests that the rate of GDP dissociation from the GTP-binding protein responsible for this stimulation is faster in the absence of Mg2+ than in its presence. While an equimolar concentration of GTP gives 50% inhibition of GTP gamma S-stimulated release, 100-fold excesses of ITP, ATP, UTP and CTP gave no inhibition of GTP gamma S-stimulated release. Both the inability of ITP to inhibit GTP gamma S-stimulated secretion and the increase in GTP gamma S-stimulated secretion caused by preincubation in the absence of Mg2+ indicate that some of the properties of the GTP-binding protein responsible for this stimulation are more like those of the low molecular weight GTP-binding proteins rap1 and ras than those of a heterotrimeric G-protein. Low concentrations of N-ethylmaleimide gave more inhibition of GTP gamma S-stimulated release than Ca(2+)-stimulated release which suggests that the mechanisms by which Ca2+ and GTP gamma S stimulate norepinephrine release are at least in part distinct.  相似文献   

4.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

5.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

6.
We have characterized a magnesium-dependent guanylate cyclase in homogenates of Dictyostelium discoideum cells. 1) The enzyme shows an up to 4-fold higher cGMP synthesis in the presence of GTP analogues with half-maximal activation at about 1 microM guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) or 100 microM guanosine 5'-(beta, gamma-imido)triphosphate; little or no stimulation was observed with GTP, guanosine mono- and diphosphates or with adenine nucleotides, with the exception of the ATP analogue adenosine 5'-(beta, gamma-imido)triphosphate. 2) Both basal and GTP gamma S-stimulated guanylate cyclase activity were rapidly lost from homogenates as was the ability of GTP gamma S to stimulate the enzyme after cell lysis. 3) Inclusion of 25 microM GTP gamma S during cell lysis reduced the KM for GTP from 340 to 85 microM and increased the Vmax from 120 to 255 pmol/min.mg protein, as assayed in homogenates 90 s after cell lysis. 4) Besides acting as an activator, GTP gamma S was also a substrate for the enzyme with a KM = 120 microM and a Vmax = 115 pmol/min.mg protein. 5) GTP gamma S-stimulated, Mg2+-dependent guanylate cyclase was inhibited by submicromolar concentrations of Ca2+ ions, and by inositol 1,4,5-trisphosphate in the absence of Ca2+ chelators. 6) Guanylate cyclase activity was detected in both supernatant and pellet fractions after 1 min centrifugation at 10,000 x g; however, only sedimentable enzyme was stimulated by GTP gamma S. We suggest that the Mg2+-dependent guanylate cyclase identified represents the enzyme that in intact cells is regulated via cell surface receptors, and we propose that guanine nucleotides are allosteric activators of this enzyme and that Ca2+ ions play a role in the maintenance of the enzyme in its basal state.  相似文献   

7.
Addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to intact Chinese hamster lung fibroblasts (CCL39) depolarized by high K+ concentrations results in activation of phosphoinositide-specific phospholipase C (PLC) (at GTP gamma S concentrations greater than 0.1 mM), inhibition of adenylate cyclase (between 10 microM and 0.5 mM), and activation of adenylate cyclase (above 0.5 mM). Since GTP gamma S-induced activation of PLC is dramatically enhanced upon receptor-mediated stimulation of PLC by alpha-thrombin, we conclude that in depolarized CCL39 cells GTP gamma S directly activates various guanine nucleotide-binding regulatory proteins (G proteins) coupled to PLC (Gp(s)) and to adenylate cyclase (Gi and Gs). Pretreatment of cells with pertussis toxin strongly inhibits GTP gamma S-induced activation of PLC and inhibition of adenylate cyclase. GTP gamma S cannot be replaced by other nucleotides, except by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which mimics after a lag period of 15-20 min all the effects of GTP gamma S, with the same concentration dependence and the same sensitivity to pertussis toxin. We suggest that GDP beta S is converted in cells into GTP beta S, which acts as GTP gamma S. Since cell viability is not affected by a transient depolarization, these observations provide a simple method to examine long-term effects of G protein activation on DNA synthesis. We show that a transient exposure of G0-arrested CCL39 cells to GTP gamma S or GDP beta S under depolarizing conditions is not sufficient by itself to induce a significant mitogenic response, but markedly potentiates the mitogenic action of fibroblast growth factor, a mitogen known to activate a receptor-tyrosine kinase. The potentiating effect is maximal after 60 min of pretreatment with 2 mM GTP gamma S. GDP beta S is equally efficient but only after a lag period of 15-20 min. Mitogenic effects of both guanine nucleotide analogs are suppressed by pertussis toxin. Since the activation of G proteins by GTP gamma S under these conditions vanishes after a few hours, we conclude that a transient activation of G proteins facilitates the transition G0----G1 in CCL39 cells, whereas tyrosine kinase-induced signals are sufficient to mediate the progression into S phase.  相似文献   

8.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

9.
Polymorphonuclear leukocytes (PMNs) activate phospholipase C via a guanine nucleotide regulatory (G) protein. Pretreatment of the PMNs with pertussis toxin (PT) or 4-beta-phorbol 12-myristate 13-acetate (PMA) inhibited chemoattractant-induced inositol trisphosphate generation. To determine the loci of inhibition by PT and PMA, G protein-mediated reactions in PMN plasma membranes were examined. Plasma membranes prepared from untreated and PMA-treated PMNs demonstrated equivalent ability of a GTP analogue to suppress high affinity binding of the chemoattractant-N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) to its receptor. The rate, but not the extent, of high affinity binding of GTP gamma[35S] to untreated PMN membranes was stimulated up to 2-fold by preincubation with 1 microM fMet-Leu-Phe. The ability of fMet-Leu-Phe to stimulate the rate of GTP gamma S binding was absent in membranes prepared from PT-treated PMNs, but remained intact in membranes from PMA-treated cells. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) via phospholipase C could be activated in untreated PMN membranes by either fMet-Leu-Phe plus GTP or GTP gamma S alone at low concentrations of Ca2+ (0.1-1 microM). Membranes prepared from PT-treated PMNs degraded PIP2 upon exposure to GTP gamma S, but not fMet-Leu-Phe plus GTP. In contrast, membranes prepared from phorbol ester-treated PMNs did not hydrolyze PIP2 when incubated with GTP gamma S. Treatment with PT or PMA did not affect the ability of 1 mM Ca2+ to activate PIP2 hydrolysis in PMN membranes, indicating that neither treatment directly inactivated phospholipase C. Therefore, PT appears to block coupling of the chemoattractant receptors to G protein activation, while phorbol esters disrupt coupling of the activated G protein to phospholipase C. The phorbol ester-mediated effect may mimic a negative feedback signal induced by protein kinase C activation by diacylglycerol generated upon activation of phospholipase C.  相似文献   

10.
NADPH oxidase in membranes of undifferentiated and dimethylsulphoxide-differentiated HL-60 cells was activated by arachidonic acid (AA) in the presence of Mg2+ and a cytosolic cofactor (CF) found in differentiated HL-60 cells. Basal superoxide (O2-) formation was enhanced several-fold by addition of the stable GTP-analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), prior to AA and was completely prevented by that of GDP. Basal and GTP gamma S-stimulated O2- formation was terminated by GDP. In the presence of Mg2+ or EDTA, basal O2- formation ceased after 25 or 10 min, respectively, and was reinitiated by GTP gamma S or GTP gamma S plus Mg2+. Albumin terminated O2- formation, which was reactivated by AA in the presence of GTP gamma S. Our results show that (1) activation of NADPH oxidase in HL-60 membranes is dependent on endogenous GTP, Mg2+, AA and CF, which is induced during myeloid differentiation, and that (2) NADPH oxidase activation is a reversible process modulated by exogenous guanine nucleotides at various stages of activity of NADPH oxidase. We suggest crucial roles of guanine nucleotide-binding proteins in the activation, deactivation and reactivation of the enzyme.  相似文献   

11.
The effect of guanine nucleotides on platelet and calf brain cytosolic phospholipase C was examined in the absence of membranes or detergents in an assay using labeled lipid vesicles. Guanine nucleotides stimulate hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate [( 3H]PtdIns-4,5-P2) catalyzed both by enzyme from human platelets and by partially purified enzyme from calf brain. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was the most potent guanine nucleotide with a half-maximal stimulation at 1-10 microM, followed by guanosine 5'-(beta, gamma-imido)triphosphate greater than GTP greater than GDP = guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(2-thiodiphosphate) was able to reverse the GTP gamma S-mediated stimulation. NaF also stimulated phospholipase C activity, further implying a role for a guanine nucleotide-binding protein. In the presence of GTP gamma S, the enzyme cleaved PtdIns-4,5-P2 at higher pH values, and the need for calcium ions was reduced 100-fold. The stimulation of PtdIns-4,5-P2 hydrolysis by GTP gamma S ranged from 2 to 25-fold under various conditions, whereas hydrolysis of [3H]phosphatidylinositol was only slightly affected by guanine nucleotides. We propose that a soluble guanine nucleotide-dependent protein activates phospholipase C to hydrolyze its initial substrate in the sequence of phosphoinositide-derived messenger generation.  相似文献   

12.
Rat mast cells and bone marrow-derived mouse mast cells (BMMC) were sensitized with mouse IgE mAb, and permeabilized by ATP to introduce guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) and/or guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) into the cells. After ATP-induced lesions were resealed with Mg2+, the cells were challenged by Ag to determine the effect of the nonhydrolyzable guanosine phosphate on Ag-induced hydrolysis of phosphoinositides and histamine release. Introduction of GTP gamma S into permeabilized rat mast cells or BMMC, followed by exposure of the cells to extracellular Ca2+, resulted in histamine release, but failed to induce hydrolysis of phosphoinositides. It was also found that introduction of GTP gamma S into the cells did not synergistically enhance Ag-induced histamine release. Introduction of GDP beta S into sensitized BMMC inhibited the GTP gamma S-dependent, Ca2+-induced histamine release but failed to inhibit Ag-induced histamine release. The results suggest that GTP gamma S-dependent, Ca2+-induced histamine release and Ag-induced histamine release go through independent biochemical pathways. It was also found that introduction of GTP gamma S or GDP beta S into sensitized BMMC neither enhanced nor inhibited Ag-induced formation of inositol phosphates. These results together with previous findings that pretreatment of BMMC with either pertussis toxin or cholera toxin does not affect Ag-induced hydrolysis of phosphoinositides, indicate that a G protein is not involved in the transduction of IgE-mediated triggering signals to phospholipase C in rodent mast cells.  相似文献   

13.
[3H]Inositol-labelled GH3 rat anterior pituitary tumour cells were permeabilized with digitonin and were incubated at 37 degrees C in the presence of ATP and Mg2+. [3H]Polyphosphoinositide breakdown and [3H]inositol phosphate production were stimulated by hydrolysis-resistant GTP analogues and by Ca2+. Of the nucleotides tested, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) was the most effective stimulus. Activation by GTP gamma S appeared to be mediated by a guanine nucleotide-binding (G) protein as GTP gamma S-stimulated [3H]inositol phosphate production was inhibited by other nucleotides with a potency order of GTP = GDP = guanosine 5'-[beta-thio]diphosphate greater than ITP greater than GMP greater than UTP = CTP = adenosine 5'-[gamma-thio]triphosphate. The stimulatory effects of 10 microM-GTP gamma S on [3H]inositol phosphate levels were reversed by spermine and spermidine with IC50 values of approx. 0.25 and 2 mM respectively. Putrescine was inhibitory only at higher concentrations. Similarly, GTP gamma S-induced decreases in [3H]polyphosphoinositide levels were reversed by 2.5 mM-spermine. The inhibitory effects of spermine were not overcome by supramaximal concentrations of GTP gamma S. In contrast, [3H]inositol phosphate production stimulated by addition of 0.3-0.6 mM-Ca2+ to incubation media was only partially inhibited by spermine (5 mM), and spermine was not inhibitory when added Ca2+ was increased to 1 mM. These data show that polyamines, particularly spermine, inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis with a marked selectivity towards the stimulatory effects of GTP gamma S.  相似文献   

14.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

15.
Guanine nucleotides are thought to mediate the interaction of the receptors for calcium-mobilizing hormones and phosphoinositide-specific phospholipase C. In the present study the characteristics of guanine nucleotide-dependent phospholipase C activation were studied in [3H]inositol-labeled permeabilized hepatocytes. The nonhydrolyzable GTP analogs guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and guanyl-5'-yl imidodiphosphate stimulated the production of inositol phosphates by phospholipase C. The effect was concentration-dependent with half-maximal and maximal stimulation occurring with 0.6 and 10 microM GTP gamma S, respectively. The guanine nucleotide-induced stimulation of phosphoinositide breakdown was selective for phosphatidylinositol (4,5)-bisphosphate over phosphatidylinositol (4)-phosphate. The individual inositol phosphates formed after maximal GTP gamma S exposure were analyzed by high-performance liquid chromatography. Inositol 1,4,5-trisphosphate was rapidly produced, followed by the formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate. Ethanol is known to activate hormone-sensitive phospholipase C in intact rat hepatocytes. Ethanol (0.3 M) was ineffective in altering the characteristics of GTP gamma S-stimulated phospholipase C activation, in both digitonin-treated and sonicated hepatocytes. The metabolism of the various inositol phosphate isomers was unaffected by ethanol. The findings demonstrate the potential for the use of permeabilized hepatocytes in the analysis of phospholipase C activation by guanine nucleotides. Ethanol does not activate phospholipase C by altering this process.  相似文献   

16.
Guanine nucleotide-binding regulatory proteins (G proteins) transduce a remarkably diverse group of extracellular signals to a relatively limited number of intracellular target enzymes. In the neutrophil, transduction of the signal following fMet-Leu-Phe receptor-ligand interaction is mediated by a pertussis toxin substrate (Gi) that activates inositol-specific phospholipase C. We have utilized a plasma membrane-containing fraction from unstimulated human neutrophils as the target enzyme to explore the role of G proteins in arachidonate and cytosolic cofactor-dependent activation of the NADPH-dependent O-2-generating oxidase. When certain guanine nucleotides or their nonhydrolyzable analogues were present during arachidonate and cytosolic cofactor-dependent activation, they exerted substantial dose-dependent effects. The GTP analogue, GTP gamma S, caused a 2-fold increase in NADPH oxidase activation (half-maximal stimulation, 1.1 microM). Either GDP or its nonhydrolyzable analogue, GDP beta S, inhibited up to 80% of the basal NADPH oxidase activation (Ki GDP = 0.12 mM, GDP beta S = 0.23 mM). GTP caused only slight and variable stimulation, whereas F-, an agent known to promote the active conformation of G proteins, caused a 1.6-fold stimulation of NADPH oxidase activation. NADPH oxidase activation in the cell-free system was absolutely and specifically dependent on Mg2+. Although O2- production in response to fMet-Leu-Phe was inhibited greater than 90% in neutrophils pretreated with pertussis toxin, cytosolic cofactor and target oxidase membranes from neutrophils treated with pertussis toxin showed no change in basal- or GTP gamma S-stimulated NADPH oxidase activation. Cholera toxin treatment of neutrophils also had no effect on the cell-free activation system. Our results suggest a role for a G protein that is distinct from Gs or Gi in the arachidonate and cytosolic cofactor-dependent NADPH oxidase cell-free activation system.  相似文献   

17.
Rabbit brain cortical membranes, which have been extracted with 2 M KCl, hydrolyze exogenously added [3H]phosphatidylinositol [( 3H]PI) in a guanine nucleotide- and carbachol-dependent manner. Both oxotremorine-M and carbachol are full agonists with EC50 values of 8 and 73 microM, respectively. Pirenzepine and atropine inhibit carbachol-stimulated [3H]PI hydrolysis. The hydrolysis-resistant guanine nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) is the most potent in supporting carbachol-stimulated hydrolysis of PI. There is no effect of carbachol in the absence of guanine nucleotides or in the presence of 100 microM adenosine 5'-O-(3-thiotriphosphate), adenosine-5'-(beta, gamma-imido)triphosphate, or sodium pyrophosphate. Guanylyl-5'-(beta,gamma-imido)triphosphate [Gpp(NH)p] in the presence of carbachol also stimulates PI hydrolysis although much less than that seen with GTP gamma S. GDP and Gpp(NH)p are potent antagonists of the GTP gamma S-dependent carbachol response. Optimal stimulation by carbachol and GTP gamma S was observed at 0.3-1 microM free Ca2+ and 6 mM MgCl2. Limited trypsinization resulted in loss of receptor-regulated PI breakdown and a slight decrease in basal activity. These results demonstrate that phospholipase C hydrolysis of exogenous PI by rabbit cortical membranes may be stimulated by carbachol in a guanine nucleotide-dependent manner.  相似文献   

18.
ATP promoted biphasic effects on both basal and fMLP-stimulated arachidonic acid (AA) release in neutrophil-like HL60 cells: stimulation in the micromolar range (EC50 = 3.2 +/- 0.9 microM) and inhibition at higher concentrations (EC50 = 90 +/- 11 microM). ATP also inhibited UTP- and platelet activating factor-stimulated AA release. Only stimulatory effects of ATP on basal or fMLP-stimulated phospholipase C were observed. The inhibitory effect of ATP on AA release was not due to reacylation of released AA, chelation of extracellular Ca2+, cell permeabilization, or changes in the rise of [Ca2+]i induced by agonist. The inhibition was rapid, being detected within 5-15 s. The inhibitory effect of ATP on fMLP-stimulated AA release could be desensitized by pretreatment of the cells with 2 mM ATP, but not 20 microM ATP, the concentration that resulted in maximal release of AA and inositol phosphates. The inhibition by ATP was neither dependent on generation of adenosine by ATP hydrolysis nor the result of direct interaction of ATP with P1 purinergic receptors. Among other nucleotides tested (CTP, GTP, ITP, TTP, XTP, adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP), adenyl-5'-yl imidodiphosphate (AMP-P(NH)P), ADP, adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), and UTP), only UTP and ATP gamma S displayed biphasic effects with potencies and efficacies almost identical to those of ATP. The other nucleotides only exhibited stimulatory effects (EC50 = 60-300 microM). The results are consistent with a model of dual regulation of AA release by two distinct subtypes of P2U receptors in HL60 cells.  相似文献   

19.
The non-hydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and cyclic AMP potentiated the Ca2+-evoked secretion of alpha-melanocyte-stimulating hormone (alpha-MSH) from permeabilized neurointermediate lobe (IL) cells of rat pituitary gland. The enhancement by Mg-GTP gamma S (100 microM) and cyclic AMP (1 microM) depended on the intracellular Ca2+ concentration (EC50 = 4.8 +/- 1.8 and 4.6 +/- 1.7 microM; mean +/- SE, with and without Mg-GTP gamma S and cyclic AMP, respectively). A similar effect was observed with guanine nucleotide triphosphate (GTP and GppNHp). Mg was absolutely required for this event. Neither Mg-GTP gamma S nor cyclic AMP alone was effective in potentiating alpha-MSH secretion. GDP beta S blocked the Mg-GTP gamma S (100 microM) and cyclic AMP augmented secretion of alpha-MSH. Neither neomycin (which affects the process of inositol 1,4,5-triphosphate-mediated Ca2+ mobilization) or colchicine (which influences microtubule assembly) had an effect on the cyclic AMP and Mg-GTP gamma S potentiation of alpha-MSH secretion. These data suggest that the GTP-binding protein may be involved in the regulation of alpha-MSH secretion after Ca2+ entry into the cells, since the intracellular environment is controlled in the permeabilized cells.  相似文献   

20.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号