首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responses of 116 neurons of the second auditory area to clicks were recorded extracellularly in experiments on unanesthetized cats immobilized with D-tubocurarine. Neurons with and without (54.6%) took part in the response to clicks. The unit response to a click consisted of 1 or 2 spikes or a short volley. Different neurons responded to clicks at different times. The latent period of 25.8% of all neurons recorded was 6.5–13 msec, of 70% it was 14–25 msec, and of 4.2% it was over 25 msec. Long-latency responses to clicks (40, 50, and 100 msec) also were recorded. The responding neurons were found throughout the thickness of the cortex, but more frequently in layers III and IV. No relationship was found between the depth of the neuron and its latest period. Responses consisting of EPSP, EPSP-spike, EPSP-spike-IPSP, EPSP-IPSP, and primary IPSP were recorded intracellularly from the neurons of this area. It was concluded from the results that neurons of the second auditory area can be activated by the arrival of an afferent volley along the geniculo-cortical pathway and also by the arrival of impulses from the first auditory area.  相似文献   

2.
Spikes were recorded extracellularly and IPSPs intracellularly from auditory cortical neurons of cats immobilized with D-tubocurarine in response to stimulation of geniculo-cortical fibers. Fibers whose stimulation induces IPSPs in auditory cortical neurons mainly have low thresholds. When two stimuli, each of which separately evoked an IPSP of maximal amplitude, were applied to them the shortest interval at which the second stimulus evoked an effect was 2.5–3 msec. This effect consisted of an increase in the duration of the integral IPSP, the amplitude of which either remained unchanged or increased under these circumstances by only 5–10%. The interval at which a separate IPSP appeared in response to the second stimulus depended on the duration of the ascending phase of the IPSP and varied from 4 to 22 msec for different neurons. The amplitude of the second IPSP in this case depended on the interval between stimuli. Under moderately deep pentobarbital anesthesia the number of neurons responding to stimulation of the geniculo-cortical fibers by spikes fell sharply but the number of neurons responding by primary IPSPs remained almost unchanged. Under very deep pentobarbital anesthesia, when spike responses of the cortical neurons completely disappeared, the IPSPs also were completely suppressed. It is concluded that inhibitory neurons of the auditory cortex are excited by thick low-threshold fibers, they have a short refractory period, and they are resistant to the narcotic action of pentobarbital.  相似文献   

3.
Inhibition in neurons of the lizard olfactory bulb was investigated by intracellular recording. The hyperpolarization arising in the neurons after the spike in the response to orthodromic and antidromic activation is similar in composition and reflects the development of early and late IPSPs, differing from one another in latency, duration, and mechanism of generation. The early IPSP is evidently generated by the functioning of dendrodendritic synapses, formed by dendrites of the interglomerular cell on the membrane of the apical dendrites of the secondary neurons, whereas synapses generating the late IPSP are located on the basal dendrites and are formed by endings of the granular cells. The mechanisms of generation of the early and late IPSPs in the secondary neurons are discussed. A classification of neurons of the lizard olfactory bulb is given on the basis of analysis of their intracellular activity.  相似文献   

4.
Extra — and intracellular unit responses in area AII to stimulation of geniculocortical fibers and of area AI were studied in cat immobilized with D-tubocurarine. In response to stimulation of geniculocortical fibers, antidromic mono-, di-, and polysynaptic spikes were generated by neurons in area AII. The number of antidromic responses in area AII was about half that found in area AI under the same conditions of stimulation. Most of the orthodromic responses were di- and polysynaptic. Intracellular responses also were recorded in the form of EPSPs, EPSP-IPSPs, and primary IPSPs. Stimulation of area AI evoked responses in the neurons of area AII with latent periods of 0.75–6.0, 6.1–16.0, 18.0–23.0, and 60–100 msec. Removal of the medial geniculate body led to a marked decrease in the number of responses with latent periods of 6.1–16.0 msec. Some neurons of area AII responded by spikes to stimulation of both the geniculocortical fibers and area AI. Comparison of the latent periods of responses to these two types of stimulation showed that impulses from area AI to area AII are directed both to input neurons for impulses from the medial geniculate body and to neurons at subsequent stages of the intracortical neuronal change. In response to stimulation of cortical area AI, disynaptic IPSPs appeared in many neurons of area AII. Only one IPSP with a latent period of 1.0 msec, regardable as monosynaptic, was recorded.  相似文献   

5.
6.
Partly purified membranes (with plasmalemma material) of Acetabularia mediterranea were studied with respect to ATPase activity in alkali- and Ca++-free media and its sensitivity to pH (5 – 9), oligomycin (200 ?g/mg protein), 100 ?M N-N′-dicyclohexylcarbodiimide (DCCD), and 50 ?M vanadate. Besides activities which may originate from mitochondrial H+ ATPase (oligomycin-sensitive, alkaline pH optimum) and tonoplast H+ ATPase (DCCD-sensitive, pH optimum 7.5), there is ATPase activity with a pH optimum around pH 6.5, sensitive to vanadate and insensitive to DCCD. These results strongly suggest that the electrogenic Cl? pump in the plasmalemma of Acetabularia is an ATPase. Effects of Mg++, Mg-ATP, ADP, GTP, UTP, CTP and HCO3 ? versus Cl? on this ATPase activity are described.  相似文献   

7.
8.
The effect of pentobarbital, chloralose, and urethane on IPSPs arising in auditory cortical neurons in response to electrical stimulation of geniculocortical fibers was studied in experiments on cats immobilized with D-tubocurarine. Pentobarbital (60–80 mg/kg body weight, intraperitoneally) sharply reduced the number of neurons responding by spikes to geniculocortical stimulation. Only short-latency responses remained. The number of neurons responding with IPSPs was unchanged. Pentobarbital increased the duration of the IPSPs by 1.5–2 times and shortened their latent periods. Under the influence of chloralose (60 mg/kg, intraperitoneally) the number of responses of EPSP—spike—IPSP type was increased and the duration of the IPSPs also was increased by 3–4 times. The latent period of the primary IPSPs was shortened. Unlike pentobarbital and chloralose, urethane (1000 mg/kg, intravenously) reduced the duration of the IPSPs to 30 msec. About 2% of IPSPs recorded before anesthesia had a latent period of 1.0–1.5 msec. Under the influence of anesthesia the relative number of these IPSPs increased to 5.7%. It it postulated that they are monosynaptic. The mechanism of action of general anesthetics on the cortical inhibitory system is discussed.  相似文献   

9.
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.  相似文献   

10.
Different wound dressings with antibacterial property have been surveyed and one among them is bacterial cellulose (BC). Since the BC does not have antibacterial property, the biologically produced silver nanoparticles (SNPs) were impregnated into the BC. For the BC production, Hestrin–Schramm broth was used. Formation of the BC was proven by enzymatic hydrolysis. For SNPs production, the bacterial supernatant was treated with AgNO3 and formation of SNPs was monitored through spectrophotometer, TEM and XRD. For impregnation of SNPs into the BC, the cleaned membrane was placed in the bacterial supernatant that contained 1 mmol of AgNO3. The antibacterial assay was done for the BC/SNPs. Enzymatic hydrolysis proved the presence of the BC. Spectrophotometer and XRD results showed the formation of SNPs. TEM analysis revealed the presence of SNPs with sizes around 5–100 nm. SEM micrographs showed the impregnation of SNPs into the BC. Antibacterial test exhibited the antibacterial activity of the BC/SNPs.  相似文献   

11.
GABAA receptors mediate two different types of inhibitory currents: phasic inhibitory currents when rapid and brief presynaptic GABA release activates postsynaptic GABAA receptors and tonic inhibitory currents generated by low extrasynaptic GABA levels, persistently activating extrasynaptic GABAA receptors. The two inhibitory current types are mediated by different subpopulations of GABAA receptors with diverse pharmacological profiles. Selective antagonism of tonic currents is of special interest as excessive tonic inhibition post-stroke has severe pathological consequences. Here we demonstrate that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent inhibiting phasic currents compared to tonic currents (IC50 values: 101 vs. 427 nM). Conversely, DPP-4-PIOL was estimated to be more than 20 times as potent inhibiting tonic current compared to phasic current (IC50 values: 0.87 vs. 21.3 nM). Consequently, we were able to impose a pronounced reduction in tonic GABA mediated current (>70 %) by concentrations of DPP-4-PIOL, at which no significant effect on the phasic current was seen. Our findings demonstrate that selective inhibition of GABA mediated tonic current is possible, when targeting a subpopulation of GABAA receptors located extrasynaptically using the antagonist, DPP-4-PIOL.  相似文献   

12.
During an initial survey, using thin layer chromatography, 10 of 64 samples of mothers’ breast milk, collected from donors at the Corniche Maternity Hospital and the Al-Nehyan Clinic for Maternity and Childhood, were found to contain Aflatoxin M1 at concentrations ranging from 0.3 to 1.3 ng mL?1. A second survey using HPLC showed Aflatoxin M1 at concentrations ranging from 7 to 23 pg mL?1 in all of the 15 samples collected. 6 of 20 samples of camel milk collected from several sources in Abu Dhabi were also found to contain Aflatoxin M1 at levels ranging from 0.25 to 0.8 ng mL?1.  相似文献   

13.
It has been described that A disintegrin and metalloproteinase (ADAM10) may involve in the physiopathology of prion diseases, but the direct molecular basis still remains unsolved. In this study, we confirmed that ADAM10 was able to cleave recombinant human prion protein in vitro. Using immunoprecipitation tests (IP) and immunofluorescent assays (IFA), reliable molecular interaction between the native cellular form of PrP (PrPC) and ADAM10 was observed not only in various cultured neuronal cell lines but also in brain homogenates of healthy hamsters and mice. Only mature ADAM10 (after removal of its prodomain) molecules showed the binding activity with the native PrPC. Remarkably more prion protein (PrP)-ADAM10 complexes were detected in the membrane fraction of cultured cells. In the scrapie-infected SMB cell model, the endogenous ADAM10 levels, especially the mature ADAM10, were significantly decreased in the fraction of cell membrane. IP and IFA tests of prion-infected SMB-S15 cells confirmed no detectable PrP-ADAM10 complex in the cellular lysates and PrP-ADAM10 co-localization on the cell surface. Furthermore, we demonstrated that the levels of ADAM10 in the brain homogenates of scrapie agent 263K-infected hamsters and agent ME7-infected mice were also almost diminished at the terminal stage, showing time-dependent decreases during the incubation period. Our data here provide the solid molecular basis for the endoproteolysis of ADAM10 on PrP molecules and interaction between ADAM10 and PrPC. Obvious loss of ADAM10 during prion infection in vitro and in vivo highlights that ADAM10 may play essential pathophysiological roles in prion replication and accumulation.  相似文献   

14.
In the present study, the effects of 10- or 100-nm silica oxide (SiO2) NPs on human peripheral blood mononuclear cells (PBMC) were examined. Cytotoxic effects and oxidative stress effects, including glutathione (GSH) depletion, the formation of protein radical species, and pro-inflammatory cytokine responses, were measured. PBMC exposed to 10-nm NP concentrations from 50 to 4,000 ppm showed concentration-response increases in cell death; whereas, for 100-nm NPs, PBMC viability was not lost at <500 ppm. Interestingly, 10-nm NPs were more cytotoxic and induced more oxidative stress than 100-nm NPs. Immunoelectron micrographs show the cellular distribution of GSH and NPs. As expected based on the viability data, the 10-nm NPs disturbed cell morphology to a greater extent than did the 100-nm NPs. Antibody to the radical scavenger, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was used for Western blot analysis of proteins with radicals; more DMPO proteins were found after exposure to 10-nm NPs than 100-nm NPs. Examination of cytokines (TNF-α, IL-1ra, IL-6, IL-8, IL-1β, and IFN-γ) indicated that different ratios of cytokines were expressed and released after exposure to 10- and 100-nm NPs. IL-1β production was enhanced by 10- and 100-nm NPs;, the cytotoxicity of the NPs was associated with an increase in the IL-1β/IL-6 ratio and 100-nm NPs at concentrations that did not induce loss of cell viability enhanced IL-1β and IL-6 to an extent similar to phytohemagglutinin (PHA), a T cell mitogen. In conclusion, our results indicate that SiO2 NPs trigger a cytokine inflammatory response and induce oxidative stress in vitro, and NPs of the same chemistry, but of different sizes, demonstrate differences in their intracellular distribution and immunomodulatory properties, especially with regard to IL-1β and IL-6 expression.  相似文献   

15.
Hyperpolarization-activated cyclic-nucleotide-gated cation nonselective (HCN) channels are involved in the pathology of nervous system diseases. HCN channels and γ-aminobutyric acid (GABA) receptors can mutually co-regulate the function of neurons in many brain areas. However, little is known about the co-regulation of HCN channels and GABA receptors in the chronic ischemic rats with possible features of vascular dementia. Protein kinase A (PKA) and TPR containing Rab8b interacting protein (TRIP8b) can modulate GABAB receptors cell surface stability and HCN channel trafficking, respectively, and adaptor-associated kinase 1 (AAK1) inhibits the function of the major TRIP8b-interacting protein adaptor protein 2 (AP2) via phosphorylating the AP2 μ2 subunit. Until now, the role of these regulatory factors in chronic cerebral hypoperfusion is unclear. In the present study, we evaluated whether and how HCN channels and GABAB receptors were pathologically altered and investigated neuroprotective effects of GABAB receptors activation and cross-talk networks between GABAB receptors and HCN channels in the hippocampal CA1 area in chronic cerebral hypoperfusion rat model. We found that cerebral hypoperfusion for 5 weeks by permanent occlusion of bilateral common carotid arteries (two-vessel occlusion, 2VO) induced marked spatial and nonspatial learning and memory deficits, significant neuronal loss and decrease in dendritic spine density, impairment of long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses, and reduction of surface expression of GABAB R1, GABAB R2, and HCN1, but increase in HCN2 surface expression. Meanwhile, the protein expression of TRIP8b (1a-4), TRIP8b (1b-2), and AAK1 was significantly decreased. Baclofen, a GABAB receptor agonist, markedly improved the memory impairment and alleviated neuronal damage. Besides, baclofen attenuated the decrease of surface expression of GABAB R1, GABAB R2, and HCN1, but downregulated HCN2 surface expression. Furthermore, baclofen could restore expression of AAK1 protein and significantly increase p-PKA, TRIP8b (1a-4), TRIP8b (1b-2), and p-AP2 μ2 expression. Those findings suggested that, under chronic cerebral hypoperfusion, activation of PKA could attenuate baclofen-induced decrease in surface expression of GABAB R1 and GABAB R2, and activation of GABAB receptors not only increased the expression of TRIP8b (1a-4) and TRIP8b (1b-2) but also regulated the function of TRIP8b via AAK1 and p-AP2 μ2, which restored the balance of HCN1/HCN2 surface expression in rat hippocampal CA1 area, and thus ameliorated cognitive impairment.  相似文献   

16.
17.
18.
19.
The formation ofcis-l,2,-dihydroxy-l,2,-dihydronaphthalene from naphthalene by naphthalene oxygenase, purified fromCorynebacterium renale ATCC 15075, was demonstrated to involve oxidation of a mol NADH and consumption of one mol oxygen. The enzyme contains one g-atom Fe2+ and one FAD. Catalase inhibited product formation and H2O2 could substitute for NADH in the reaction. Superoxide dismutase inhibited enzyme activity when either NADH or H2O2 was present; the generation of superoxide anion on addition of NADH to the enzyme, in the absence of naphthalene, was detected by the nitro blue tetrazolium reduction method. Hydroxyl radical scavengers, ethanol, mannitol and sodium benzoate, inhibited product formation when either NADH or H2O2 was present. Electron spin resonance studies, under aerobic conditions, indicated that iron of the enzyme underwent valence changes during the course of the reaction  相似文献   

20.
STAT3 pathway plays an important role in the growth of diffuse large B-cell lymphoma (DLBCL) cells. Here we investigated the antitumor activity of Quercetin, a flavonoid compound, in combination with rituximab in DLBCL cell lines in vitro. We found that Quercetin synergistically enhanced rituximab-induced growth inhibition and apoptosis in DLBCL cell lines. Moreover, we found Quercetin exerted inhibitory activity against STAT3 pathway and downregulated the expression of survival genes. These results suggest that combining the Quercetin with rituximab may present an attractive and potentially effective way for the treatment of DLBCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号