首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using a variety of immunological techniques, the supernatant levels of ribosomal proteins were measured in mutants lacking the ribosomal proteins L1 or L11, and in wild-type strains. There was a 2.5–5-fold elevation of protein L11 level in the supernatant of strains lacking protein L1, compared to wild-type. In contrast, there was no elevation, but rather a diminution, in the corresponding L1 level in strains lacking protein L11, compared to wild-type. These results are consistent with a model for the control of expression of the L11-L1 operon in which protein L1 is an inhibitor of expression of that operon, but protein L11 is not. The supernatant concentrations of other proteins were indistinguishable in all strains.  相似文献   

2.
Summary Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain. Correspondence to: P. Dennis  相似文献   

3.
4.
Biochemistry (Moscow) - Ribosomal protein L1 is a conserved two-domain protein that is involved in formation of the L1 stalk of the large ribosomal subunit. When there are no free binding sites...  相似文献   

5.
6.
The human papillomavirus type 11 (HPV-11) L1 major capsid protein can be trypsinized to generate recombinant capsomeres that retain HPV genotype-restricted capsid antigenicity (M. Li, T. P. Cripe, P. A. Estes, M. K. Lyon, R. C. Rose, and R. L. Garcea, J. Virol. 71:2988–2995, 1997). In the present study, HPV-11 virion-neutralizing monoclonal antibodies H11.F1 and H11.H3, previously characterized as recognizing two distinct HPV-11 capsid-neutralizing antigenic domains (S. W. Ludmerer, D. Benincasa, and G. E. Mark III, J. Virol. 70:4791–4794, 1996), were each found to be highly immunoreactive with trypsin-generated capsomeres in an enzyme-linked immunosorbent assay (ELISA). Capsomeres were used to generate high-titer polyclonal immune sera that demonstrated HPV genotype-restricted reactivity by ELISA. The capsomere antisera were then tested in an in vitro infectivity assay and found to neutralize HPV-11 virions. In this assay, HPV-11 capsomere polyclonal antisera exhibited neutralization titers (10−5 to 10−6) comparable to those obtained with a virion-neutralizing antiserum raised previously against intact HPV-11 VLPs (R. C. Rose, R. C. Reichman, and W. Bonnez, J. Gen. Virol. 75:2075–2079, 1994). These results indicate that highly immunogenic, genotype-restricted HPV capsid-neutralizing antigenic domains are contained entirely within capsomeres. Thus, capsomeres may be viable vaccine candidates for the prevention of HPV disease.  相似文献   

7.
8.
The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a "reversible switch" in facilitating the coordinated movements associated with EF-G-driven GTP hydrolysis. The reversible switch mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11 complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: first, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a beta-sheet and a 3(10)-helix-turn-helix element in the N terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N terminus, as implied by a decrease of radius of gyration from 18.5 A to 16.2 A. Second, the regions, which undergo large conformation changes, exhibit motions on milliseconds-microseconds or nanoseconds-picoseconds time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 3(10)-helix in L11.  相似文献   

9.
The genes corresponding to the L11, L1, L10, and L12 equivalent ribosomal proteins (L11e, L1e, L10e, and L12e) of Escherichia coli have been cloned and sequenced from two widely divergent species of archaebacteria, Halobacterium cutirubrum and Sulfolobus solfataricus, and the L10 and four different L12 genes have been cloned and sequenced from the eucaryote Saccharomyces cerevisiae. Alignments between the deduced amino acid sequences of these proteins and to other available homologous proteins of eubacteria and eucaryotes have been made. The data suggest that the archaebacteria are a distinct coherent phylogenetic group. Alignment of the proline-rich L11e proteins reveals that the N-terminal region, believed to be responsible for interaction with release factor 1, is the most highly conserved region and that there is specific conservation of most of the proline residues, which may be important in maintaining the highly elongated structure of the molecule. Although L11 is the most highly methylated protein in the E. coli ribosome, the sites of methylation are not conserved in the archaebacterial L11e proteins. The L1e proteins of eubacteria and archaebacteria show two regions of very high similarity near the center and the carboxy termini of the proteins. The L10e proteins of all kingdoms are colinear and contain approximately three fourths of an L12e protein fused to their carboxy terminus, although much of this fusion has been lost in the truncated eubacterial protein. The archaebacterial and eucaryotic L12e proteins are colinear, whereas the eubacterial protein has suffered a rearrangement through what appear to be gene fusion events. Within the L12e derived region of the L10e proteins there exists a repeated module of 26 amino acids, present in two copies in eucaryotes, three in archaebacteria, and one in eubacteria. This modular sequence is apparently also present in the L12e proteins of all kingdoms and may play a role in L12e dimerization, L10e-L12e complex formation, and the function of the L10e-L12e complex in translation.  相似文献   

10.
11.
12.
13.
分析了人乳头瘤病毒11型(HPV11)L1主要衣壳蛋白的B细胞优势表位,并以此为基础研制表位多肽疫苗。研究中采用Goldkey和.PC/Gene软件系统,分析HPV11的L1主要衣壳蛋白的二级结构、抗原性、B细胞表位,并引人氨基酸抗原性指数,综合评估其B细胞优势表位。Fmoc固相合成表位多肽,高效液相层析方法纯化,毛细管电泳分析其纯度。与0.2ml佐剂完全乳化后,按50μg/只的剂量免疫小鼠,进行动物水平的免疫效果评价。取免疫小鼠血清,与HPV11 DNA阳性的尖锐湿疣患者的疣体上清液结合,鉴定免疫后小鼠所产生抗体的特异性。发现HPV11的L1主要衣壳蛋白的第426~439位和第487~501位具有较高的免疫原性,可明显诱导小鼠血清抗体滴度升高,且该抗体与人尖锐湿疣的疣体组织上清液呈阳性反应。说明所选这两个肽段为HPV11的L1主要衣壳蛋白的B细胞优势表位,但是否具有功能特异性,尚需进一步研究。  相似文献   

14.
15.
16.
17.
L16 exhibits both peptide bond and transesterification activities when reconstituted into 2 M LiCl core particles. L6 and L11, when reconstituted in a similar manner in the absence of L16, manifest significant transesterification activity. Both L6 and L11 enhance the transesterification activity of L16; L11 being more active than L6 in this respect. However, both L6 and L11 have minimal effect on peptide bond formation when reconstituted with L16 at concentrations more than 2.5 M equivalents. Both L6 and L11 exhibit a differential effect on transesterification. The affinity-labelling agents, like PhCH2SO2F, diisopropylfluorophosphate and ethoxyformic anhydride, have been used to explore the role of residues in peptide bond formation and transesterification. It is proposed that the Ser-Phe combination present in L16, L11 and L6 is involved in transesterification in addition to the single histidine in L16. The single histidine in L16 appears to be important in the catalysis of peptide bond formation and transesterification.  相似文献   

18.
BCL2L11/BIM     
In response to toxic stimuli, BCL2L11 (also known as BIM), a BH3-only protein, is released from its interaction with dynein light chain 1 (DYNLL1 also known as LC8) and can induce apoptosis by inactivating anti-apoptotic BCL2 proteins and by activating BAX-BAK1. Recently, we discovered that BCL2L11 interacts with BECN1 (Beclin 1), and that this interaction is facilitated by DYNLL1. BCL2L11 recruits BECN1 to microtubules by bridging BECN1 and DYNLL1, thereby inhibiting autophagy. In starvation conditions, BCL2L11 is phosphorylated by MAPK8/JNK and this phosphorylation abolishes the BCL2L11-DYNLL1 interaction, allowing dissociation of BCL2L11 and BECN1, thereby ameliorating autophagy inhibition. This finding demonstrates a novel function of BIM beyond its roles in apoptosis, highlighting the crosstalk between autophagy and apoptosis, and suggests that BCL2L11’s dual effects in inhibiting autophagy and promoting apoptosis may have important roles in disease pathogenesis.  相似文献   

19.
20.
The L11 ribosomal protein operon of Escherichia coli contains the genes for L11 and L1 and is feedback regulated by the translational repressor L1. The mRNA target site for this repression is located close to the Shine-Dalgarno sequence for the first cistron, rp1K (L11). By use of a random mutagenesis procedure we have isolated and characterized a series of point mutations in the L11 leader mRNA which eliminate or greatly diminish the regulation by L1. The mutations define a region essential for translational regulation upstream of the L11 Shine-Dalgarno sequence and identify a region of structural homology with the L1 binding site on 23S rRNA. These results are also consistent with the previously proposed model for the secondary structure of the L11 leader mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号