首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iva s.str. (comprising ten species) was examined by cpDNA restriction site variation to determine phyletic relationships within the group. The results were compared with relationships proposed from other data. A total of 86 restriction site mutations was detected, 47 of which proved phylogenetically informative. A single most parsimonious tree was obtained using both Wagner and Dollo parsimony. The tree revealed three main lineages that are congruent with the three chromosome lineages (base numbers of x = 16, 17, 18). The monophyly of the x = 16 and 18 groups was supported strongly by molecular data, while the monophyly of x = 17 lineage was only supported moderately. Relationships among the three lineages indicate that the sect.Iva is paraphyletic because sect.Linearbractea is nested within it. Both morphological data and the secondary chemical data are in agreement with the proposed cpDNA phylogeny. Because of this agreement, sect.Iva is revised such that,I. axillaris was excluded and positioned within the newly proposed sect.Rhizoma. Patterns and rates of cpDNA evolution were also examined. The results indicated an uneven evolution in the chloroplast genome with different rates of cpDNA evolution in at least a few species ofIva. However, the evolutionary clock hypothesis can not be rejected within most of the lineages inIva.  相似文献   

2.
Seventy populations of North American annualMicroseris, Stebbinsoseris, andUropappus species were examined for chloroplast and nuclear ribosomal DNA restriction site variability to determine the origin of the allotetraploid speciesS. heterocarpa andS. decipiens. Previously identified chloroplast DNA restriction site variants were used in concert with restriction site variation forNco I in the nuclear-encoded ribosomal DNA repeat. The presence of two, mutually exclusive restriction site gains were observed in diploid populations ofM. douglasii; these same variants were also found in populations of allotetraploidS. heterocarpa, indicating mutiple origins of this species from different maternal diploid populations ofM. douglasii. Variation in the rDNA repeat between the diploid annual species and the putative paternal genome ofU. lindleyi was found to be additive inS. heterocarpa. A similar relationship was observed for the origin ofS. decipiens; cpDNA restriction site variants found inM. bigelovii andM. douglasii were present inS. decipiens. The rDNANco I variants also were additive in this purported allotetraploid. These results confirm the reticulate evolutionary pattern inStebbinsoseris and provide another example of multiple origins of intergeneric allopolyploids.  相似文献   

3.
Melaleuca alternifolia andM. linariifolia are commercially important Australian species harvested for their essential oils. Both species have relatively narrow and disjunct distributions on the central coast of eastern Australia. Variation in the chloroplast genome was assessed for eight individuals from each of twelve populations, representing the species' geographic range. Low nucleotide diversity withinM. alternifolia contrasted with high nucleotide diversity inM. linariifolia. CpDNA data are consistent with the southern population ofM. alternifolia being a hybrid population withM. linariifolia. The two species are sympatric in this region. Variation inM. linariifolia was geographically structured, with northern populations differing from southern populations by seven restriction site mutations, five length mutations and an inversion. There was no evidence of hybridisation of the cp genome of northernM. linariifolia with the partially sympatric speciesM. trichostachya. Intra- and interspecific variation in the chloroplast genomes ofM. alternifolia, M. linariifolia, andM. trichostachya indicate considerable potential for the use of intraspecific cpDNA studies in examining phylogenetic relationships in melaleucas.  相似文献   

4.
We have used total genomic DNA as a probe to size-fractionated restriction enzyme digests of genomic DNA from a range ofTriticeae species from the generaLeymus Hochst.,Psathyrostachys Nevski, andHordeum L., and hybrids betweenHordeum andLeymus to investigate their taxonomic relationships. Genomic Southern hybridization was found to be an effective and simple way to assess the distribution and diversity of essentially species-specific and common, repetitive DNA sequences, and is hence especially useful in evolutionary studies. The DNA sequences ofH. vulgare seem to diverge substantially from those ofH. brachyantherum, H. lechleri, H. procerum, andH. depressum. The genome ofThinopyron bessarabicum shows little homology to those of theLeymus species investigated, confirming thatT. bessarabicum is not an ancestral genome inLeymus. Although the genomes ofLeymus andPsathyrostachys share substantial proportions of DNA sequences, they include divergent repeated sequences as well. Hybridization with a ribosomal DNA probe (pTa 71) showed that the coding regions containing structural genes encoding the 18 S, 5.8 S, and 26 S ribosomal RNA were conserved among the species investigated, whereas the intergenic spacer region was more variable, presenting different sizes of restriction fragments and enabling a classification of the species. The rye heterochromatin probe pSc 119.2 hybridized to DNA fromH. lechleri andT. bessarabicum, but not to DNA from the other species investigated.  相似文献   

5.
Chloroplast DNA restriction site variation was studied in 31 New World species ofIpomoea, representing a majority of the New World sections and series within the genus. Using 14 endonucleases, a total of 124 phylogenetically informative restriction sites was detected. Dollo parsimony, Wagner parsimony, and bootstrap methods were employed to construct phylogenetic trees and evaluate confidence intervals of monophyletic groups. With a few exceptions, groups circumscribed on the basis of morphological variation are in agreement with groupings based on restriction site variation. Relationships between subgeneric groupings, however, disagree substantially with those proposed in the past. Although conflicting hypotheses for some intersectional relationships are not presently resolvable, cpDNA restriction site analyses propose the following refinements of existing classification schemes.Ipomoea ser.Setosae is divided into distantly related groups, as is sect.Pharbitis. SeriesTyrianthinae, a proposed segregate of sect.Pharbitis, is associated with sect.Calonyction and the Tricolor complex (subg.Quamoclit).Ipomoea sect.Batatas is segregated from other herbaceous groups of the heterogeneous subg.Quamoclit sensu lato and aligned as a derivative ofI. setosa, subg.Eriospermum. To test for homology of key characters weighted in traditional schemes, morphological features were studied with respect to their distribution on lineages defined by restriction site data. Characters such as setose sepals, foliose-pubescent sepals, and erect growth habit, among others, are interpreted as having multiple origins, while 3-locular ovaries, 4-locular ovaries, and long-haired seeds have evolved only once.  相似文献   

6.
We have analyzed the changes occurring in the chloroplast DNA (cpDNA) of taxa belonging to thePhaseolus vulgaris complex to help clarify relationships among species of this complex. Two restriction maps for 11 restriction enzymes comprising the whole chloroplast genome from a wildP. vulgaris and a wildP. coccineus accession were constructed. These maps allowed us to compare a total of 330 restriction sites between the two genomes in order to identify polymorphisms, assess the type of mutations detected, and identify regions of high variability. A region, located in the large single-copy region near the borders with the inverted repeats, accounted for a large portion of the variation. Most of the mutations detected were due to restriction sites gains or losses. Variable and conserved regions were then evaluated in 30 accessions belonging to taxa of theP. vulgaris complex. Phylogenetic analyses were made using parsimony methods. Conclusions obtained from such analyses were the following: (1) there was high cpDNA variability withinP. coccineus but not inP. vulgaris. (2)P. coccineus subsp.glabellus showed a very distinct cpDNA type that strongly suggests that it actually belongs to a different but as yet undetermined section of the genus. Our cpDNA observations are supported by distinctive morphological traits and reproductive biology of this taxon. (3) InP. coccineus subsp.darwinianus (also classified asP. polyanthus), the cpDNA lineage was in disagreement with data obtained from nuclear markers and suggested a reticulated origin by hybridization betweenP. coccineus as the male parent and an ancestralP. polyanthus type, closely allied toP. vulgaris, as the seed parent. This initial cross was presumably followed by repeated backcrossing toP. coccineus. Our cpDNA studies illustrate the importance of molecular markers in elucidating phylogenetic relationships. They also indicate that accurate phylogenies will require analyses of both nuclear and cytoplasmic genomes.  相似文献   

7.
Chloroplast DNA restriction site variation was examined amongLepidium taxa usually classified in sects.Lepia, Lepiocardamon andCardamon. By using 15 restriction endonucleases, filter hybridization experiments, and comparative mapping procedures, a total of 119 variable restriction sites was detected. Of these, 56 were phylogenetically informative and were used in a cladistic analysis. The resulting phylogenetic tree agrees with results derived from morphology, isozyme electrophoresis and the analysis of glucosinolates. The data suggest: 1) The recognition of sect.Lepia, and 2) that sect.Lepiocardamon has close relationships to sect.Cardamon and that both should be amalgamated. Low rates of interspecific chloroplast DNA sequence divergence in sect.Lepia correlated well with morphological data and isoelectric focusing analysis of Rubisco, suggesting that taxa of sect.Lepia are closely related and most likely have diversified recently.  相似文献   

8.
邓颢珂  罗凌  王若秋  高少羽  张文驹 《广西植物》2023,43(10):1838-1848
基因组大小是物种基因组的重要特征,通常用DNA C值来衡量,能够用于快速判断基因组倍性,并为分类学与进化生物学提供重要依据。海三棱藨草(Scirpus mariqueter)是长江口和杭州湾具有重要生态意义的标志性物种,被认为是扁秆藨草(S. planiculmis)和藨草(S. triqueter)的杂交种,因染色体小而难以准确确定倍性。近年来,部分研究者指出该物种的分类和命名存在疑点。该研究通过基因组Survey分析检测海三棱藨草样本CJ1的基因组特征,测序深度约为120 ×,并以绿豆(Vigna radiata)为参考标准,利用流式细胞术测定了海三棱藨草及其同域近缘种扁秆藨草和藨草以及海三棱藨草和扁秆藨草的杂交F1共13个样本的DNA C值和相对倍性。结果表明:(1)基因组Survey分析测得CJ1的基因组大小为244.12 Mbp,杂合率为0.68%,重复序列比例为42.38%,GC含量为37.25%。(2)流式细胞术测得来自不同区域的海三棱藨草各样本的基因组倍性相同,1C值在234.87 ~ 242.5 Mbp之间,其中CJ1的基因组大小与基因组Survey检测结果高度一致。(3)扁秆藨草的1C值在251.77 ~ 264.13 Mbp之间,藨草1C值为537.33 Mbp。根据上述基因组大小,认为海三棱藨草不可能是这两者的杂交种。该研究补充了海三棱藨草及其近缘种的基因组特征,为后续全基因组测序奠定基础,同时也否定了海三棱藨草起源于扁杆藨草和藨草杂交的假说。  相似文献   

9.
The 16 species of theSedum acre-group were investigated for the presence of alkaloids. They areS. acre ofS. ser.Acria, S. alpestre, S. annuum, S. apoleipon, S. borissovae, S. euxinum, S. grisebachii, S. laconicum, S. multiceps, S. sexangulare, S. tuberiferum, S. tuberosum, S. ursi, andS. urvillei ofS. ser.Alpestria, S. samium ofS. ser.Samia, andS. litoreum ofS. ser.Litorea. S. acre differs significantly from the other species. It contains sedamine, hydroxy sedamine, and a number of 2,6-disubstituted piperidine alkaloids. The leafy parts of the species ofS. ser.Alpestria, S. ser.Samia, andS. ser.Litorea contain 4 piperidine alkaloids which also occur inS. acre, and in addition 4 pyrrolidine alkaloids not present inS. acre. The composition of the alkaloid fraction agrees with the infrageneric classification (series) based on the hybridization patterns of the species (comparia).  相似文献   

10.
Phylogenetic analysis of chloroplast DNA (cpDNA) restriction site variation supports a close genetic relationship between the Southwest AsianSenecio flavus subsp.breviflorus and the North AmericanS. mohavensis. The intercontinental disjunct distribution of these two desert annuals may have originated via long distance dispersal. The chloroplast genomes of the Southern and North AfricanS. flavus subsp.flavus and subsp.breviflorus differ by at least ten restriction sites, while at most two restriction sites differentiate the cpDNA genomes of subsp.breviflorus and the outgroupS. squalidus. This suggests that the cpDNA genome ofS. flavus subsp.breviflorus may have resulted from introgression and chloroplast capture with a Mediterranean species related toS. squalidus. This hypothesized introgression could account for the morphological distinctiveness and duplicated isozyme loci ofS. flavus subsp.breviflorus relative to subsp.flavus.  相似文献   

11.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

12.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

13.
Chloroplast DNA restriction site variation was examined for 35 taxa in theVernonieae and four outgroup tribes, using 17 restriction enzymes mapped for ca. 900 restriction sites per species; 139 mutations were found to be phylogenetically informative. Phylogenetic trees were constructed using Wagner and weighted parsimony, and evaluated by bootstrap and decay analyses. Relationships of Old and New World taxa indicate complex geographical relationships; there was no clear geographic separation by hemisphere. The relationships between Old and New World Vernonias found here support prior morphological analyses. The sister group to all New and most Old World taxa was composed of a small group of Old World species including yellow-flowered, trinervate-leaved species previously postulated to be basal in the tribe. The majority of both New and Old World taxa are derived from a lineage beginning with the monotypic genusStokesia, an endemic of the southeastern United States. The genusVernonia was also found to be paraphyletic within both the New and Old World. Available data do not support either the separation ofVernonia or the tribeVernonieae into geographically distinct lineages. The pattern of relationships within theVernonieae for taxa from North America, Asia, Africa, Central and South America is most similar to that of several other groups of both plants and animals with a boreotropical origin, rather than an origin in Gondwanaland. Such a pattern of distribution suggests more ancient vicariant events than are routinely postulated for theAsteraceae.  相似文献   

14.
Summary Mitochondrial DNAs from Nicotiana tabacum, an amphiploid, and its putative progenitor species, N. sylvestris and N. tomentosiformis were compared in structure and organization. By using DNA transfer techniques and cloned fragments of known genes from maize and N. sylvestris as labeled probes, the positions of homologous sequences in restriction digests of the Nicotiana species were analyzed. Results indicate that the mitochondrial DNA of N. tabacum was inherited from N. sylvestris. Conservation in organization and sequence homology between mtDNAs of N. tabacum and the maternal progenitor, N. sylvestris, provide evidence that the mitochondrial genome in these species is evolutionarily stable. Approximately one-third of the probed restriction fragments of N. tomentosiformis mtDNA showed conservation of position with the other two species. Pattern variations indicate that extensive rearrangement of mtDNA has occurred in the evolution of these Nicotiana species.  相似文献   

15.
Summary The extent and type of chloroplast DNA restriction fragment length polymorphism was determined among individual tree samples of coast redwood, Douglas fir, incense-cedar, and loblolly pine. A total of 107 trees was surveyed for three restriction enzymes (BamHI, EcoRI, HindIII) and six chloroplast DNA probes from petunia (P3, P4, P6, P8, P10, S8). The probes comprise 64% of the petunia chloroplast genome. Polymorphisms were detected in all species but loblolly pine. Coast redwood and incense-cedar had a small number of rare variants, whereas Douglas fir had one highly polymorphic region of insertions/deletions in sequences revealed by the P6 probe from petunia. The mutation hotspot is currently being studied by DNA sequence analysis.  相似文献   

16.
Summary Mitochondrial DNA (mtDNA) restriction site maps for nine species of theDrosophila obscura subgroup and forDrosophila melanogaster were established. Taking into account all restriction enzymes (12) and strains (45) analyzed, a total of 105 different sites were detected, which corresponds to a sample of 3.49% of the mtDNA genome. Based on nucleotide divergences, two phylogenetic trees were constructed assuming either constant or variable rates of evolution. Both methods led to the same relationships. Five differentiated clusters were found for theobscura subgroup species, one Nearctic, represented byDrosophila pseudoobscura, and four Palearctic, two grouping the related triads of speciesDrosophila subobscura, Drosophila madeirensis, Drosophila guanche, andDrosophila ambigua, Drosophila obscura, Drosophila subsilvestris, and two more represented by one species each,Drosophila bifasciata, andDrosophila tristis. The different Palearctic clusters are as distant between themselves as with the Nearctic one. For the related speciesD. subobscura, D. madeirensis, andD. guanche, the pairD. subobscura-D. madeirensis is the closest one. The relationships found by nucleotide divergence were confirmed by differences in mitochondrial genome size, with related species sharing similar genome lengths and differing from the distant ones. The total mtDNA size range for theobscura subgroup species was from 15.5 kb forD. pseudoobscura to 17.1 forD. tristis.  相似文献   

17.
Summary The J and E genome species of the Triticeae are invaluable sources of salt tolerance. The evidence concerning the phyletic relatedness of the J genome of diploid Thinopyrum bessarabicum and the E genome of diploid Th. elongatum (=Lophopyrum elongatum) is discussed. Low level of chromosome pairing between J and E at different ploidy levels, suppression of J-E pairing by the Ph1 pairing regulator that inhibits homoeologous pairing, complete sterility of the diploid hybrids (JE), karyotypic divergence of the two genomes, differences in total content and distribution of heterochromatin along their chromosomes, and marked differences in gliadin proteins, isozymes, 5S DNA, and rDNA indicate that J and E are distinct genomes. Well-defined biochemical markers have been identified in the two genomes and may be useful in plant breeding. The level of distinction between J and E is comparable to that among the universally accepted homoeologous genomes A, B, and D of wheat. Therefore, the J and E genomes are homoeologous and not homologous, although some workers continue to call them homologous. The previous workers' data on chromosome pairing in diploid hybrids and/ or karyotypic differences in the conventionally stained chromosomes do not provide sufficient evidence for the proposed merger of J and E genomes (and, hence, of the genera Thinopyrum and Lophopyrum) specifically and for establishing genome relationships generally. Extra precautions should be exercised before changing the designation of an established genome and before merging two genera. A uniform, standardized system of genomic nomenclature for the entire Triticeae is proposed, which should benefit cytogeneticists, plant breeders, taxonomists, and evolutionists.Cooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper no. 3832  相似文献   

18.
Using the AFLP technique highly informative DNA fingerprints were generated from 19 taxa ofSolanum sect.Petota (potatoes) and three taxa ofSolanum sect.Lycopersicum (tomatoes). Both phenetic and cladistic analyses were conducted from the individual genotypic level to the species level. An AFLP fingerprint, using a combination of suitable AFLP primers, generated 12 to 71 scorable fragments per genotype which was sufficient for taxonomic interpretation. The classifications based on the molecular markers were generally in agreement with current taxonomic opinions. Unexpectedly,S. microdontum was associated with ser.Megistacroloba rather than with ser.Tuberosa, andS. demissum (ser.Demissa) and species of ser.Acaulia appeared closely affiliated. AFLP is an efficient and reliable technique to generate biosystematic data and therefore a promising tool for evolutionary studies.  相似文献   

19.
Summary The genus Allium contains many economically important species, including the bulb onion, chive, garlic, Japanese bunching onion, and leek. Phylogenetic relationships among the cultivated alliums are not well understood, and taxonomic classifications are based on relatively few morphological characters. Chloroplast DNA is highly conserved and useful in determining phylogenetic relationships. The size of the chloroplast genome of Allium cepa was estimated at 140 kb and restriction enzyme sites were mapped for KpnI, PstI, PvuII, SalI, XbaI, and XhoI. Variability at restriction enzyme sites in the chloroplast DNA was studied for at least three accessions of each of six cultivated, old-world Allium species. Of 189 restriction enzyme sites detected with 12 enzymes, 15 mutations were identified and used to estimate phylogenetic relationships. Cladistic analysis based on Wagner and Dollo parsimony resulted in a single, most-parsimonious tree of 16 steps and supported division of the species into sections. Allium species in section Porrum were distinguished from species in sections Cepa and Phyllodolon. Two species in section Rhiziridium, A. schoenoprasum and A. tuberosum, differed by five mutations and were placed in separate lineages. Allium cepa and A. fistulosum shared the loss of a restriction enzyme site and were phylogenetically closer to each other than to A. schoenoprasum. This study demonstrates the usefulness of restriction enzyme site analysis of the chloroplast genome in the elucidation of phylogenetic relationships in Allium.  相似文献   

20.
Genome-specific DNA markers are of great value in many applications. Recent work on different plants and animal species indicated that PCR- (polymerase chain reaction) based genetic marker systems using specific primers are highly genome-specific. To test the genome specificity of sequence-tagged-sites (STSs) as genetic markers in Stylosanthes, 20 pairs of primers were generated. Fifteen were from randomly selected single-copy Pstl genomic clones, and the other five were from two known gene sequences. These primer pairs were analysed against a set of 24 genotypes representing 12 different Stylosanthes species. Thirteen of these primer pairs amplified successfully. Overall, there was a low level of genome specificity, suggesting a low degree of genomic divergence within this group of Stylosanthes species. Of the 312 entries (24 genotypes by 13 primer pairs), PCR amplifications were unsuccessful (little or no products) in only 16 cases. The number of banding patterns detected by each of these primer pairs varied from 2 to 12 with an average pair-wise polymorphism of 44.3%. The level of intraspecific variation detected on normal agarose gels was only 3.8%. Further evidence that diploid S. hamata and diploid S. humilis are progenitors of tetraploid S. hamata and that S. viscosa is a progenitor of S. scabra, was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号