首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.  相似文献   

2.
ATP synthase is a unique rotary machine that uses the transmembrane electrochemical potential difference of proton (Delta(H(+))) to synthesize ATP from ADP and inorganic phosphate. Charge translocation by the enzyme can be most conveniently followed in chromatophores of phototrophic bacteria (vesicles derived from invaginations of the cytoplasmic membrane). Excitation of chromatophores by a short flash of light generates a step of the proton-motive force, and the charge transfer, which is coupled to ATP synthesis, can be spectrophotometrically monitored by electrochromic absorption transients of intrinsic carotenoids in the coupling membrane. We assessed the average number of functional enzyme molecules per chromatophore vesicle. Kinetic analysis of the electrochromic transients plus/minus specific ATP synthase inhibitors (efrapeptin and venturicidin) showed that the extent of the enzyme-related proton transfer dropped as a function of the inhibitor concentration, whereas the time constant of the proton transfer changed only marginally. Statistical analysis of the kinetic data revealed that the average number of proton-conducting F(O)F(1)-molecules per chromatophore was approximately one. Thereby chromatophores of Rhodobacter capsulatus provide a system where the coupling of proton transfer to ATP synthesis can be studied in a single enzyme/single vesicle mode.  相似文献   

3.
Results are presented that confirm and extend earlier findings that efrapeptin is a potent inhibitor of oxidative phosphorylation. Binding of efrapeptin is shown to be reversible, and a dissociation constant for the enzyme-inhibitor complex is estimated to be 10(-8) M under conditions for either ATP synthesis or hydrolysis. Fifty per cent inhibition of the ATP hydrolysis activity of submitochondrial particles is obtained at a ratio of 0.56 mol of inhibitor/mol of enzyme. Studies of efrapeptin binding under pseudo-first order conditions show that the onset of inhibition is first order with respect to efrapeptin. Combined with the inhibition titer, these results indicate that there is one inhibitor binding site per molecule of enzyme. Steady state velocity studies using a substrate regenerating system show that efrapeptin is competitive with both ADP and phosphate during ATP synthesis. However, during ATP hydrolysis, a distinctly different mode of inhibition is indicated with respect to ATP. Data are presented which suggest that ATP promotes the binding of efrapeptin to the enzyme. Indications that efrapeptin is a catalytic site inhibitor make these results difficult to reconcile with a simple mechanistic scheme involving a single independnet catalytic site for ATP synthesis and hydrolysis. Our results are discussed in terms of support for catalytic cooperativity between adjacent subunits as recently proposed by Kayalar et al. (Kayalar, C., Rosing, J., and Boyer, P. D. (1977) J. Biol. Chem. 252, 2486-2491).  相似文献   

4.
The amount of F1-ATPase in chromatophores from Rhodospirillum rubrum was determined by Western blotting using anti-RrF1 rabbit antibodies. 9.1 mmol F1 (mol bacteriochlorophyll)-1 was obtained or 14% of the total protein content of the chromatophores. The turnover rate of the F0F1-ATPase was 17 molecules ATP s-1 during synthesis, 2 molecules ATP s-1 during hydrolysis under coupled conditions with Mg2+ as the divalent cation, and 7 molecules ATP s-1 during hydrolysis in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Binding of 1 mol oligomycin/mol F0F1-ATPase was found to inhibit the activities of the enzyme completely. A single binding site was found with a Kd of approximately 2 microM.  相似文献   

5.
Morphology and photophosphorylation of chromatophores from t Rhodospirillum rubrum have been investigated by dynamic light scattering (DLS) and in situ 31P-NMR measurement. Two components, designated as light and heavy fractions, with different average sizes and size distributions were detected by the DLS and can be separated by sucrose density gradient centrifugation. The light fraction has an average size of about 140 nm in diameter with a narrow distribution and shows a high activity of photophosphorylation. About 70 of ADP were found to be converted to ATP purely by the photophosphorylative reaction. In contrast, the heavy fraction has a broad size distribution centered around 350 nm and a low activity of photophosphorylation. Only about 50 of ADP was converted into ATP and AMP with a ratio of 7:3, indicating that most membrane-bound adenylate kinase are attached on the particles of the heavy fraction. Effect of physical disruption on the structural integrity of chromatophores has been examined by using sonication with various oscillating strengths. The result shows that the morphology of chromatophores for both light and heavy fractions is relatively stable to the disruption, while the photophosphorylative activity of the light fraction is very sensitive to the disrupting strength, suggesting that the internal structure of the purified chromatophores could be partially damaged by the disruption.  相似文献   

6.
F(0)F(1)-ATP synthase (H(+)-ATP synthase, F(0)F(1)) utilizes the transmembrane protonmotive force to catalyze the formation of ATP from ADP and inorganic phosphate (P(i)). Structurally the enzyme consists of a membrane-embedded proton-translocating F(0) portion and a protruding hydrophilic F(1) part that catalyzes the synthesis of ATP. In photosynthetic purple bacteria a single turnover of the photosynthetic reaction centers (driven by a short saturating flash of light) generates protonmotive force that is sufficiently large to drive ATP synthesis. Using isolated chromatophore vesicles of Rhodobacter capsulatus, we monitored the flash induced ATP synthesis (by chemoluminescence of luciferin/luciferase) in parallel to the transmembrane charge transfer through F(0)F(1) (by following the decay of electrochromic bandshifts of intrinsic carotenoids). With the help of specific inhibitors of F(1) (efrapeptin) and of F(0) (venturicidin), we decomposed the kinetics of the total proton flow through F(0)F(1) into (i) those coupled to the ATP synthesis and (ii) the de-coupled proton escape through F(0). Taking the coupled proton flow, we calculated the H(+)/ATP ratio; it was found to be 3.3+/-0.6 at a large driving force (after one saturating flash of light) but to increase up to 5.1+/-0.9 at a smaller driving force (after a half-saturating flash). From the results obtained, we conclude that our routine chromatophore preparations contained three subsets of chromatophore vesicles. Chromatophores with coupled F(0)F(1) dominated in fresh material. Freezing/thawing or pre-illumination in the absence of ADP and P(i) led to an increase in the fraction of chromatophores with at least one de-coupled F(0)(F(1)). The disclosed fraction of chromatophores that lacked proton-conducting F(0)(F(1)) (approx. 40% of the total amount) remained constant upon these treatments.  相似文献   

7.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 degrees C, but even at 95 degrees C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

8.
ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.  相似文献   

9.
Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.  相似文献   

10.
We have earlier shown that extraction of Rhodospirillum rubrum chromatophores with LiCl removed completely the beta-subunit of their coupling factor ATPase complex leaving the other four subunits attached to the membrane (Philosoph, S., Binder, A., and Gromet-Elhanan, Z. (1977) J. Biol. Chem. 252, 8747-8752). Further treatment of these beta-less chromatophores with LiBr, under the described optimal conditions, resulted in specific removal of one additional subunit, the gamma-subunit, and both subunits were purified to homogeneity. The beta, gamma-less chromatophores as well as the beta-less ones lost their ATP-linked activities, but retained their light-induced proton uptake, resulting in the formation of an electrochemical gradient of protons composed of both a pH gradient and a membrane potential. These results indicate that the removed beta and gamma subunits cannot be an integral part of an H+ gate in the R. rubrum chromatophore membrane. Each of the removed subunits could bind to the beta, gamma-less chromatophores, but such separate reconstitution of either beta or gamma alone did not lead to restoration of any ATP-linked activity. ATP synthesis and hydrolysis could be restored to the same extent to these chromatophores by their reconstitution with both beta and gamma. It is thus concluded that the presence of both subunits is required for ATP synthesis as well as hydrolysis by the R. rubrum F0.F1 complex. The identical degree of elimination and restoration of ATP synthesis and hydrolysis upon removal and reconstitution of beta and gamma indicates that in R. rubrum at least, there seems to be no reason for suggesting the operation of different catalytic sites for the two activities.  相似文献   

11.
Rows of ATP synthase dimers in native mitochondrial inner membranes   总被引:4,自引:0,他引:4  
The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown. Here we show with submolecular resolution the organization of ATP synthases in the yeast mitochondrial inner membranes. The atomic force microscopy images we have obtained show how these molecules form dimers with characteristic 15 nm distance between the axes of their rotors through stereospecific interactions of the membrane embedded portions of their stators. A different interaction surface is responsible for the formation of rows of dimers. Such an organization elucidates the role of the ATP synthase in mitochondrial morphology. Some dimers have a different morphology with 10 nm stalk-to-stalk distance, in line with ATP synthases that are accessible to IF1 inhibition. Rotation torque compensation within ATP synthase dimers stabilizes the ATP synthase structure, in particular the stator-rotor interaction.  相似文献   

12.
The antibiotics efrapeptin and leucinostatin inhibited photosynthetic and oxidative phosphorylation and related reactions such as the dark and light ATP-Pi exchange reactions and the Mg-ATPase in Rhodospirillum rubrum chromatophores. Higher concentrations of leucinostatin were required for inhibition of the phenazine methosulfate-catalyzed photophosphorylation and light ATP-Pi exchange reaction than for the endogenous or succinate-induced photophosphorylation and dark ATP-Pi exchange reaction. Efrapeptin and leucinostatin inhibited the ATP-driven transhydrogenase while only the latter inhibited the light-driven transhydrogenase, proton gradient formation, and NAD+ reduction by succinate in chromatophores. Efrapeptin, but not leucinostatin, inhibited the soluble Ca-ATPase activity of the coupling factor obtained from chromatophores. The inhibition was competitive with ATP. It is concluded that efrapeptin is an effective energy transfer inhibitor whose site of action may be localized in the soluble coupling factor, while the effects of leucinostatin are more complex and cannot be explained as a simple uncoupling.  相似文献   

13.
By using freeze-fracture electron microscopy, chromatophores and spheroplast-derived membrane vesicles from photosynthetically grown Rhodopseudomonas sphaeroides were compared with cytoplasmic membrane and intracellular vesicles of whole cells. In whole cells, the extracellular fracture faces of both cytoplasmic membrane and vesicles contained particles of 11-nm diameter at a density of about 5 particles per 10(4) nm2. The protoplasmic fracture faces contained particles of 11 to 12-nm diameter at a density of 14.6 particles per 10(4) nm2 on the cytoplasmic membrane and a density of 31.3 particles per 10(4) nm2 on the vesicle membranes. The spheroplast-derived membrane fraction consisted of large vesicles of irregular shape and varied size, often enclosing other vesicles. Sixty-six percent of the spheroplast-derived vesicles were oriented in the opposite way from the intracellular vesicle membranes of whole cells. Eighty percent of the total vesicle surface area that was exposed to the external medium (unenclosed vesicles) showed this opposite orientation. The chromatophore fractions contained spherical vesicles of uniform size approximately equal to the size of the vesicles in whole cells. The majority (79%) of the chromatophores purified on sucrose gradients were oriented in the same way as vesicles in whole cells, whereas after agarose filtration almost all (97%) were oriented in this way. Thus, on the basis of morphological criteria, most spheroplast-derived vesicles were oriented oppositely from most chromatophores.  相似文献   

14.
ATP synthesis and hydrolysis by Rhodospirillum rubrum chromatophores as well as the soluble RrF1-ATPase activity are inhibited by 4-chloro-7-nitrobenzofurazan (NBD-C1) in a dithiothreitol-reversible manner. Using the method earlier developed in these chromatophores to remove specifically the beta-subunit from their membrane-bound RrF1 leaving all other subunits attached to the resulting inactive beta-less chromatophores (Philosoph, S., Binder, A., and Gromet-Elhanan, Z. (1977) J. Biol. Chem. 252, 8747-8752), we have tested the effect of NBD-Cl also on the isolated beta-subunit and on the beta-less chromatophores before and after their reconstitution with the missing beta-subunit. The isolated purified beta-subunit as well as the RrF1-ATPase bind covalently [14C]NBD-Cl with an accompanying increase in absorbance at 385 nm, indicative of a tyrosyl-O-NBD bond. But, unlike the inactive RrF1-NBD complex, the beta-NBD adduct is as capable as the native beta-subunit to reconstitute beta-less chromatophores and restore their ATP synthesis and hydrolysis activities. On the other hand, incubation of beta-less chromatophores with NBD-Cl before or after their reconstitution with either native beta or the NBD-saturated beta adduct results in complete inhibition of their restored activities. It is, therefore, concluded that there are different binding sites for NBD-Cl on the isolated beta-subunit and on the beta-less chromatophores or on chromatophores reconstituted with the beta-NBD adduct, where the beta-site is already occupied. Furthermore, the site responsible for inactivation by NBD-Cl of the coupled and reconstituted chromatophores and of the soluble RrF1 is different from the site modified by NBD-Cl on the isolated beta-subunit. Its subunit location is as yet unknown.  相似文献   

15.
ATP synthesis and the acceleration of the decay of the carotenoid absorption band shift after single flash excitation of Rhodopseudomonas capsulata chromatophores were compared. The two processes behave similarly with respect to: (1) ADP and Pi concentration; (2) inhibition by efrapeptin and venturicidin, and (3) inhibition by valinomycin/K+ and by ionophores. Taken together with earlier evidence for the electrochromic nature of the carotenoid band shift the data support the contention that positive charge moves outwards across the chromatophore membrane during ATP synthesis and justify the method for determination of the H+/ATP ratio (Petty, K.M. and Jackson, J.B. (1979) FEBS Lett. 97, 367-372). The ability of nucleotide diphosphates in the presence of Pi and Mg2+ to give rise to the acceleration of the carotenoid shift decay closely correlates with the rate of phosphorylation of the nucleotides in steady-state light. Nucleotide triphosphates enhance the decay in parallel with their rate of hydrolysis. Adenylyl imidodiphosphate is itself without effect on the decay of the carotenoid shift and it does not prevent the ADP-induced acceleration. The analogue does prevent the ATP effect but only after repeated flashes.  相似文献   

16.
Archaeal A-ATP synthases catalyze the formation of the energy currency ATP. The chemical mechanisms of ATP synthesis in A-ATP synthases are unknown. We have determined the crystal structure of a transition-like state of the vanadate-bound form of catalytic subunit A (AVi) of the A-ATP synthase from Pyrococcus horikoshii OT3. Two orthovanadate molecules were observed in the AVi structure, one of which interacts with the phosphate binding loop through residue S238. The second vanadate is positioned in the transient binding site, implicating for the first time the pathway for phosphate entry to the catalytic site. Moreover, since residues K240 and T241 are proposed to be essential for catalysis, the mutant structures of K240A and T241A were also determined. The results demonstrate the importance of these two residues for transition-state stabilization. The structures presented shed light on the diversity of catalytic mechanisms used by the biological motors A- and F-ATP synthases and eukaryotic V-ATPases.  相似文献   

17.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 °C, but even at 95 °C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

18.
Elastic conformational changes of the protein backbone are essential for catalytic activities of enzymes. To follow relative movements within the protein, F?rster-type resonance energy transfer (FRET) between two specifically attached fluorophores can be applied. FRET provides a precise ruler between 3 and 8nm with subnanometer resolution. Corresponding submillisecond time resolution is sufficient to identify conformational changes in FRET time trajectories. Analyzing single enzymes circumvents the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary double motor which catalyzes the synthesis of adenosine triphosphate (ATP). A proton-driven 10-stepped rotary F(O) motor in the Escherichia coli enzyme is connected to a 3-stepped F(1) motor, where ATP is synthesized. To operate the double motor with a mismatch of step sizes smoothly, elastic deformations within the rotor parts have been proposed by W. Junge and coworkers. Here we extend a single-molecule FRET approach to observe both rotary motors simultaneously in individual F(O)F(1)-ATP synthases at work. We labeled this enzyme with two fluorophores specifically, that is, on the ε- and c-subunits of the two rotors. Alternating laser excitation was used to select the FRET-labeled enzymes. FRET changes indicated associated transient twisting within the rotors of single enzyme molecules during ATP hydrolysis and ATP synthesis. Supported by Monte Carlo simulations of the FRET experiments, these studies reveal that the rotor twisting is greater than 36° and is largely suppressed in the presence of the rotation inhibitor DCCD. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

19.
A Strid  P Nyrén 《Biochemistry》1989,28(25):9718-9724
Divalent cations are divided into two groups in relation to their ability to promote ATP synthase catalyzed reactions. In the presence of Mg2+, the following pattern rules: (i) uncoupler-stimulated ATP hydrolysis of Rhodospirillum rubrum chromatophores which shows an optimum concentration of the divalent cation; (ii) ATP-induced proton pumping in chromatophores; (iii) light-induced ATP synthesis in chromatophores; (iv) no or very low ATPase activity of purified F1-ATPase unmasked by diethylstilbestrol or n-octyl beta-D-glucopyranoside. In the presence of Ca2+, the following pattern occurs: (i) no stimulation of the ATP hydrolysis in chromatophores by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone; (ii) no ATP-induced proton pumping; (iii) no light-induced ATP synthesis; (iv) a high ATPase activity of the purified F1-ATPase which is inhibited by diethylstilbestrol and n-octyl beta-D-glucopyranoside. Co2+, Mn2+, and Zn2+ are members of the "Mg2+-group", whereas Cd2+ is suggested to fall between the two groups. Intrinsic uncoupling of the membrane-bound ATP synthase has been suggested to account for the effect caused by Ca2+ in chloroplasts [Pick, U., & Weiss, M. (1988) Eur. J. Biochem. 173, 623-628]. Such an interpretation is consistent with our results on chromatophores. The uncoupling cannot occur at the level of the membrane since neither light-induced nor Mg-ATP-induced proton pumping is affected by Ca2+. A conformational change is suggested to be the reason for this intrinsic uncoupling, and it is proposed to be controlled by the diameters of the divalent cations (Ca2+ greater than Cd2+ greater than Mn2+ greater than Co2+ greater than Zn2+ greater than Mg2+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Nowak KF  Tabidze V  McCarty RE 《Biochemistry》2002,41(51):15130-15134
The epsilon subunit of the ATP synthases from chloroplasts and Escherichia coli regulates the activity of the enzyme and is required for ATP synthesis. The epsilon subunit is not required for the binding of the catalytic portion of the chloroplast ATP synthase (CF1) to the membrane-embedded part (CFo). Thylakoid membranes reconstituted with CF1 lacking its epsilon subunit (CF1-epsilon) have high ATPase activity and no ATP synthesis activity, at least in part because the membranes are very leaky to protons. Either native or recombinant epsilon subunit inhibits ATPase activity and restores low proton permeability and ATP synthesis. In this paper we show that recombinant epsilon subunit from which 45 amino acids were deleted from the C-terminus is as active as full-length epsilon subunit in restoring ATP synthesis to membranes containing CF1-epsilon. However, the truncated form of the epsilon subunit was significantly less effective as an inhibitor of the ATPase activity of CF1-epsilon, both in solution and bound to thylakoid membranes. Thus, the C-terminus of the epsilon subunit is more involved in regulation of activity, by inhibiting ATP hydrolysis, than in ATP synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号