首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two translational inhibitors (pokeweed antiviral protein and pokeweed antiviral protein II) isolated from the leaves of the pokeweed plant, Phytolacca americana, were characterized as to their behavior during reverse-phase HPLC and their amino-terminal sequences. Alignment of the sequences demonstrated that a substantial degree of homology was present (10 of 29 identical residues). Pokeweed antiviral protein was shown by reverse-phase chromatography to be composed of at least two components, pokeweed antiviral proteina and pokeweed antiviral proteinb, which comigrated on sodium dodecyl sulfate polyacrylamide gel electrophoresis, shared identical N-terminal amino-acid sequences through residue 31, and had similar specific activities in a cell-free translation inhibition assay. Pokeweed antiviral protein II was covalently coupled to a monoclonal antibody that recognizes the transferrin receptor (anti-transferrin receptor). The disulfide-linked conjugate inhibited protein synthesis in the human breast tumor cell line MCF-7, whereas anti-transferrin receptor, pokeweed antiviral protein II, or an immunotoxin composed of an irrelevant antiserum and pokeweed antiviral protein II, were nontoxic. The inhibitory dose 50% of anti-transferrin receptor-pokeweed antiviral protein II for MCF-7 cells was 0.7 nM, whereas the corresponding ricin A chain conjugate (anti-transferrin receptor-ricin A chain) was more potent with a inhibitory dose 50% of 0.1 nM. Pokeweed antiviral protein II can be added to the growing list of translation inhibitors that are effective as components of immunotoxins in vitro. Additional studies will be needed to determine whether pokeweed antiviral protein II immunotoxins provide advantageous properties for in vivo applications.  相似文献   

2.
Ribosome-inactivating proteins from plant cells in culture.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Ribosome-inactivating proteins were found in high amounts in one line of cells of Phytolacca americana (pokeweed) cultured in vitro and, in less quantity, in lines of Saponaria officinalis (soapwort) and of Zea mays (corn) cells. 2. The main ribosome-inactivating protein from pokeweed cells was purified to homogeneity. It is a protein with Mr 29,000 and basic pI, similar to the 'pokeweed antiviral protein' (PAP), a ribosome-inactivating protein from pokeweed leaves. We propose to call the pokeweed antiviral protein isolated from pokeweed cells PAP-C. 3. PAP-C inactivates ribosomes in a less-than-equimolar ratio, thus inhibiting protein synthesis by a rabbit reticulocyte lysate with an IC50 (concentration causing 50% inhibition) of 0.067 nM (2 ng/ml), and modifies rRNA in a manner apparently identical to that of ricin and other ribosome-inactivating proteins. It inhibits protein synthesis by intact cells with an IC50 of 0.7-3.4 microM, and is toxic to mice with an LD50 of 0.95 mg/kg.  相似文献   

3.
1. The pokeweed antiviral protein, previously identified in two forms (PAP and PAP II) in the leaves of Phytolacca americana (pokeweed) [Obrig. Irvin & Hardesty (1973) Arch. Biochem. Biophys. 155, 278-289; Irvin, Kelly & Robertus (1980) Arch. Biochem. Biophys. 200, 418-425] is a protein that prevents replication of several viruses and inactivates ribosomes, thus inhibiting protein synthesis. 2. PAP is present in several forms in the seeds of pokeweed. One of them, which we propose to call 'pokeweed antiviral protein from seeds' (PAP-S) was purified in high yield (180 mg per 100 g of seeds) by chromatography on CM-cellulose, has mol.wt. 30 000, and is similar to, but not identical with. PAP and PAP II. 3. PAP-S inhibits protein synthesis in a rabbit reticulocyte lysate with an ID50 (concentration giving 50% inhibition) of 1.1 ng/ml (3.6 x 10(-11) M), but has much less effect on protein synthesis by whole cells, with an ID50 of 1 mg/ml (3.3 x 10(-5) M), and inhibits replication of herpes simplex virus type 1.  相似文献   

4.
Association of the ribosome-inactivating proteins (RIPs): pokeweed antiviral protein (PAP), gelonin, Momordica charantia inhibitor (MCI), with reconstituted Sendai virus envelopes (RSVE) was obtained without detectable loss of activities either of RIPs or of viral envelope glycoproteins. RIPs are inactive towards intact cells, but, once encapsulated in RSVE, they become cytotoxic. The concentration of RSVE-associated PAP, which causes 50% inhibition of protein synthesis by Friend erythroleukemic cells, is 0.5 ng/ml. Substances capable to inhibit the viral activities block the acquired cytotoxicity of RIPs associated to RSVE.  相似文献   

5.
A highly purified rabbit interferon was tested for its capacity to inhibit various manifestations of infection of primary rabbit kidney (RK) cells with vesicular stomatitis (VS) virus. A kinetic analysis of the actinomycin-sensitive phase of interferon-induced cellular resistance revealed that RK cells could transcribe virtually all of the hypothetical antiviral messenger ribonucleic acid (mRNA) within 3 hr. Similar exposure to interferon reduced virus yield by 95 to 99% and markedly inhibited cytopathic effect on RK cells infected at a multiplicity of 10 or less. Interferon was less effective in blocking cytopathic effects when RK cells were infected at a multiplicity of 100. However, RK cells pretreated with the same amount of interferon and infected at a multiplicity of 100 failed to incorporate (3)H-amino acids into structural or nonstructural proteins of VS virus identified by polyacrylamide gel electrophoresis. Despite this inhibition of viral protein synthesis, interferon did not prevent the switch off by VS virus of cellular protein synthesis. The rapidity with which a high multiplicity of VS virus switched off cellular protein synthesis, even in cells rendered resistant to viral infection by interferon, is further evidence that this reaction is caused by an infecting virion component rather than by a newly synthesized viral product.  相似文献   

6.
The temperature-sensitive (ts) Chinese hamster ovary (CHO) cell mutant tsH1 contains a thermolabile leucyl-tRNA synthetase. Upon incubation at the nonpermissive temperature of 39.5 degrees C, the enzyme became reversibly inhibited over a period of minutes, and the cells lost viability over a period of many hours. However, killing of tsH1 by acute heating at 45 degrees C was identical to that of wild-type (SC) cells. In addition, the heat-induced inhibition of protein synthesis was similar for both cell types, as measured after acute heating at 45 degrees C. Furthermore, both killing and inhibition of protein synthesis showed thermotolerance in both cell types. In contrast to the effects at 45 degrees C, at 39.5 degrees C, neither the inhibition of leucyl-tRNA synthetase activity nor the killing of tsH1 expressed thermotolerance. Also, treatment of tsH1 at 39.5 degrees C did not induce thermotolerance to killing at 45 degrees C. The inhibition of leucyl-tRNA synthetase activity in tsH1 at 39.5 degrees C was further distinguished from the 45 degrees C-induced inhibition of protein synthesis in SC cells by a much more rapid reversal of the inhibition of leucyl-tRNA synthetase activity. Also, the rate of reversal of the inhibition of protein synthesis by 45 degrees C in SC cells was decreased by increased heat dose. Such was not true for the 39.5 degrees C inhibition of leucyl-tRNA synthetase activity in tsH1. The data indicate that there exist two distinct types of thermal inhibition--one slowly reversible type which was observed during and after heating at 45 degrees C and both induced and expressed thermotolerance, and a second, rapidly reversible type, which was evident only during heating of tsH1 at 39.5 degrees C and neither induced nor expressed thermotolerance.  相似文献   

7.
Genomic clones encoding the mature pokeweed antiviral protein with or without C-terminal extrapeptide (PAPMC and PAPM), which have been reported to be highly toxic to E. coli cells, were inserted into the expression vector pMAL-p2. The recombinant PAPs (rPAPMC and rPAPM) were successfully expressed in E. coli at 25 degrees C, being exported to the periplasm as soluble fusions with maltose-binding protein (MBP). The rPAPs were cleaved from MBP by treatment with factor Xa and subsequently purified with final yields of 4.0 mg/liter (rPAPMC) and 5.5 mg/liter (rPAPM). rPAPM was resistant to protease digestion, but the C-terminal extrapeptide appeared to be susceptible and was partially digested by some protease in E. coli. Both rPAPMC and rPAPM were as active as the native PAPM from pokeweed leaves in depurinating rat liver and E. coli ribosomes, while the activities of rPAPMC on both ribosomes were decreased at least 60-fold by fusion with MBP.  相似文献   

8.
Pokeweed antiviral protein (PAP) and other ribosome-inactivating proteins (RIPs) had previously been thought to be incapable of attacking conspecific ribosomes, thus having no effect on endogenous processes. This assertion conflicts with a model for PAP's in vivo antiviral mechanism in which PAP (a cell wall protein) selectively enters virus-infected cells and disrupts protein synthesis, thus causing local suicide and preventing virus replication. We show here that pokeweed ( Phytolacca americana ) ribosomes, as well as endod ( Phytolacca dodecandra ) ribosomes, are indeed highly sensitive to inactivation by conspecific RIPs. Ribosomes isolated from RIP-free pokeweed and endod suspension culture cells were found to be highly active in vitro , as measured by poly(U)-directed polyphenylalanine synthesis. Phytolacca ribosomes challenged with conspecific RIPs generated doseresponse curves (IC50 of 1 nM PAP or dodecandrin) very similar to those from wheat germ ribosomes. To determine if Phytolacca cells produce a cytosolic 'anti-RIP' protective element, ribosomes were combined with Phytolacca postribosomal supernatant factors from culture cells, then challenged with conspecific RIPs. Resulting IC50 values of 3–7 nM PAP, PAP-II, PAP-S or dodecandrin indicate that supernatants from these Phytolacca cells lack a ribosomal protective element. This research demonstrates that PAP inactivates pokeweed ribosomes (and is therefore potentially toxic to pokeweed cells) and supports the local suicide model for PAP's in vivo antiviral mechanism. The importance of spatial separation between PAP and ribosomes of cells producing this RIP is emphasized, particularly if crop plants are transformed with the PAP gene to confer antiviral protection.  相似文献   

9.
In attempts to assess how many molecules of the toxic lectins abrin, ricin and modeccin are needed in the cytosol to kill HeLa cells the effect of these toxins on protein synthesis and plating efficiency was studied. The incubation time of the cells after a 1 h exposure to the toxins influenced strongly the extent of inhibition of protein synthesis. The full toxic effect was expressed about 20 h of incubation after the exposure. On further incubation, protein synthesis again increased at a rate comparable to that in the control cells. After exposure to increasing concentrations of toxins the inhibition of cellular protein synthesis measured after 20 h showed excellent agreement with the inhibition of plating efficiency, indicating that the inhibition of protein synthesis can be used as a measure of cell killing. The inhibition of protein synthesis by toxins was found to follow first order kinetics, indicating that the cells are killed by an all- or none-effect. Autoradiographic studies indicated that after exposure to intermediate toxin concentrations protein synthesis was completely abolished in some cells, whereas it appeared to proceed at a normal rate in the remaining cells. The results provide evidence that penetration of one molecule of abrin, ricin or modeccin into cytosol is lethal to HeLa cells and that the efficiency of toxin entry into the cytoplasm is very low compared to the rate of bulk toxin uptake.  相似文献   

10.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

11.
12.
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3'-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition.  相似文献   

13.
The antiviral protein from the pokeweed plant (Phytolacca americana) which inhibits eukaryotic protein synthesis has been purified to homogeneity and its molecular weight has been determined by two physical methods. The protein consists of a single polypeptide chain of an approximate molecular weight of 27,000. The inhibitory effect of this protein on the synthesis of polyphenylalanine in a cell-free system from Artemia salina suggests that this protein acts in an enzymatic manner on eukaryotic ribosomes. It is also demonstrated that polyphenylalanine synthesis on A. salina ribosomes is more sensitive to inhibition by this protein than on rabbit reticulocyte ribosomes.  相似文献   

14.
The relationship between the development of cytopathic effect (CPE) and the inhibition of host macromolecular synthesis was examined in a CPE-susceptible cloned line of Aedes albopictus cells after infection with vesicular stomatitis virus. To induce rapid and maximal CPE, two conditions were required: (i) presence of serum in the medium and (ii) incubation at 34 degrees C rather than at 28 degrees C. In the absence of serum, incubation of infected cultures at 34 degrees C resulted in a significant increase in viral protein and RNA synthesis compared with that observed at 28 degrees C. However, when serum was present in the medium, by 6 h after infection protein synthesis (both host and viral) was markedly inhibited when infected cells were maintained at 34 degrees C. RNA synthesis (host and viral) was also inhibited in vesicular stomatitis virus-infected cells maintained at 34 degrees C with serum, but somewhat more slowly than protein synthesis. Examination of polysome patterns indicated that when infected cultures were maintained under conditions which predispose to CPE, more than half of the ribosomes existed as monosomes, suggesting that protein synthesis was being inhibited at the level of initiation. In addition, the phosphorylation of one (or two) polysome-associated proteins was reduced when protein synthesis was inhibited. Our findings indicate a strong correlation between virus-induced CPE in the LT-C7 clone of A. albopictus cells and the inhibition of protein synthesis. Although the mechanism of the serum effect is not understood, incubation at 34 degrees C probably predisposes to CPE and inhibition of protein synthesis by increasing the amount of viral gene products made.  相似文献   

15.
The physiological effects of incubation at nonpermissive temperatures of Escherichia coli mutants that carry a temperature-sensitive dnaZ allele [dnaZ(Ts)2016] were examined. The temperature at which the dnaZ(Ts) protein becomes inactivated in vivo was investigated by measurements of deoxyribonucleic acid (DNA) synthesis at temperatures intermediate between permissive and nonpermissive. DNA synthesis inhibition was reversible by reducing the temperature of cultures from 42 to 30 degrees C; DNA synthesis resumed immediately after temperature reduction and occurred even in the presence of chloramphenicol. Inasmuch as DNA synthesis could be resumed in the absence of protein synthesis, we concluded that the protein product of the dnaZ allele (Ts)2016 is renaturable. Cell division, also inhibited by 42 degrees C incubation, resumed after temperature reduction, but the length of time required for resumption depended on the duration of the period at 42 degrees C. Replicative synthesis of cellular DNA, examined in vitro in toluene-permeabilized cells, was temperature sensitive. Excision repair of ultraviolet light-induced DNA lesions was partially inhibited in dnaZ(Ts) cells at 42 degrees C. The dnaZ(+) product participated in the synthesis of both Okazaki piece (8-12S) and high-molecular-weight DNA. During incubation of dnaZ(Ts)(lambda) lysogens at 42 degrees C, prophage induction occurred, and progeny phage were produced during subsequent incubation at 30 degrees C. The temperature sensitivity of both DNA synthesis and cell division in the dnaZ(Ts)2016 mutant was suppressed by high concentrations of sucrose, lactose, or NaCl. Incubation at 42 degrees C was neither mutagenic nor antimutagenic for the dnaZ(Ts) mutant.  相似文献   

16.
The relationship between nuclear and plastid DNA synthesis in cultured tobacco cells was measured by following3H-thymidine incorporation into total cellular DNA in the absence or presence of specific inhibitors. Plastid DNA synthesis was determined by hybridization of total radiolabeled cellular DNA to cloned chloroplast DNA. Cycloheximide, an inhibitor of nuclear encoded cytoplasmic protein synthesis, caused a rapid and severe inhibition of nuclear DNA synthesis and a delayed inhibition of plastid DNA synthesis. By contrast, chloramphenicol which only inhibits plastid and mitochondrial protein production, shows little inhibition of either nuclear or plastid DNA synthesis even after 24 h of exposure to the cells. The inhibition of nuclear DNA synthesis by aphidicolin, which specifically blocks the nuclear DNA polymeraseα, has no significant effect on plastid DNA formation. Conversely, the restraint of plastid DNA synthesis exerted by low levels of ethidium bromide has no effect on nuclear DNA synthesis. These results show that the synthesis of plastid and nuclear DNA are not coupled to one another. However, both genomes require the formation of cytoplasmic proteins for their replication, though our data suggest that different proteins regulate the biosynthesis of nuclear and plastid DNA.  相似文献   

17.
Glycopeptides from brain inhibit rates of polypeptide chain elongation   总被引:3,自引:0,他引:3  
In previous reports, we have identified cell-surface glycopeptides from mouse cerebrum (BCSG) that inhibited protein synthesis and mitosis in several cell types. When baby hamster kidney (BHK)-21 cells were infected with vesicular stomatitis virus (a negative strand RNA virus), BCSG extensively inhibited viral protein synthesis. This inhibition was effective against both protein and glycoprotein synthesis and was independent of amino acid uptake by infected cells, synthesis of viral RNA, and degradation of viral proteins. Analysis of polyribosome profiles in uninfected BHK-21 cells indicated that the degree of cellular protein synthesis inhibition could not be attributed to activation of RNase or solely to a disruption of chain initiation. When added directly to a cell-free protein-synthesizing system derived from BHK-21 cells, BCSG was ineffective, but if the inhibitory material was first allowed to react with cells, cell-free protein synthesis was substantially reduced. When BCSG were reacted with cells for 5 min at 0 degrees C, the cells tested, BHK-21 (a BCSG-sensitive line) and murine fibrosarcoma 2237 (a BCSG-insensitive line), both effectively adsorbed the inhibitor from the medium.  相似文献   

18.
Interferon (IFN) induced during a virus infection mediates antiviral effects both by direct inhibition of virus replication and by influencing the proliferation, differentiation, and chemotaxis of cyto-toxic lymphocytes which control the infection. Cells from tissue taken from virus-infected mice are conditioned by IFN to resist lysis by natural killer (NK) cells, while they become increasingly susceptible to lysis by cytotoxic Tlymphocytes (CTL). This is due to marked IFN-induced biochemical changes, including an up-regulation of major histocompatibility antigens, which are targets for CTL. Cytopathic viruses, which inhibit cellular RNA and protein synthesis, render target cells refractory to IFN-mediated protection against NK cells, thereby providing a mechanism for NK cells to mediate antiviral effect by preferentially lysing virus-infected but not uninfected cells.  相似文献   

19.
The effects of double-stranded RNA (dsRNA) on interferon (IFN)-induced antiviral and anticellular activities was investigated by introducing poly(I)-poly(C) into mouse L-cells. Coprecipitation of dsRNA with calcium phosphate enabled its efficient penetration into cells in culture. Rate of cellular protein synthesis was inhibited by dsRNA only in cultures pretreated with IFN. Moreover, the anticellular effect of IFN, as measured by the inhibition of cell DNA synthesis, was also enhanced by dsRNA. The kinetics of dsRNA-mediated inhibition of protein synthesis were relatively slow as compared with the inhibitory effect of 2'-5' oligoadenylic acid (2'5'A), which was also introduced into cells by the calcium phosphate coprecipitation technique. To analyze the effects of dsRNA on the antiviral state induced by IFN, vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMC), replications were followed by measuring viral-specific RNA synthesis in the cell. Introduction of dsRNA after the infection had no effect on VSV and EMC replication in control cells, and it enhanced, to a small extent, the antiviral state of cells pretreated with IFN. In contrast, introduction of 2'5'A into virus-infected cells inhibited VSV and EMC replications regardless of IFN pretreatment. This work demonstrated that the role of dsRNA in regulating the antiviral and anticellular activities of IFN could be studied by introducing exogenous dsRNA into cells in culture by the calcium phosphate coprecipitation technique.  相似文献   

20.
Heat treatment at 42 degrees C of cultured Reuber H35 rat hepatoma cells induced both a rapid decrease of the rate of protein synthesis and the rounding up of the cells. Reincubation at 37 degrees C resulted in a gradual flattening of the cells, resumption of protein synthesis, and the synthesis of heat-shock proteins. During the recovery period cells developed a resistance toward a treatment which otherwise should lead to heat-induced cell death. Thermotolerance measured in terms of cell survival was paralleled by thermal resistance of protein synthesis and the cellular ability to refrain from rounding up under heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号