首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we showed that fetal bovine cartilage contains a polypeptide that stimulates the incorporation of [35S]sulfate into proteoglycans synthesized by rat and rabbit costal chondrocytes in culture. In this paper, we report that the cartilage-derived factor (CDF) increases not only [35S]sulfate incorporation but also [3H]thymidine incorporation into rabbit chondrocytes in monolayer culture. The dose-response curve of CDF stimulation of DNA synthesis was similar in profile to that of CDF stimulation of proteoglycan synthesis. In addition, CDF markedly enhanced [3H]uridine incorporation into rabbit chondrocytes and significantly enhanced [3H]serine incorporation into total protein. These findings indicate that fetal bovine cartilage contains a factor that shows somatomedin-like activity in monolayer cultures of rabbit chondrocytes.  相似文献   

2.
The relationship between replication and the synthesis of matrix sulfated proteoglycans was investigated with fetal rat chondrocytes grown in monolayer culture. The effect of N6 O2' dibutyryl adenosine 3', 5' cyclic monophosphate (DBcAMP), adenosine 3', 5' cyclic monophosphate (cAMP), 8 Bromo adenosine 3', 5' cyclic monophosphate (8 Br-cAMP), sodium butyrate and hydroxyurea was examined. Between 0.05 and 0.5 mM DBcAMP, a dose related inhibition of cell division and stimulation of [35SO=/4] incorporation into matrix proteoglycans was demonstrated. At the higher concentrations of DBcAMP, cell division was completely inhibited and the enhancement of [35SO=/4] incorporation into matrix proteoglycans ranged between 40 and 120% (P less than 0.01). Utilizing 14C-glucosamine and photometric determination of proteoglycans with Alcian Blue, it was demonstrated that the increase in sulfate incorporation reflected enhanced accumulation of extracellular matrix. The effects of DBcAMP were mimicked by 8 Br-cAMP, suggesting they were mediated by the adenylyl cyclase system. cAMP (0.05-0.5 mM), sodium butyrate (0.1-0.5 mM) and hydroxyurea (0.5-5 mM) partially or fully inhibited cell division, but either failed or only slightly enhanced sulfate incorporation. The enhanced sulfated proteoglycan deposition promoted by DBcAMP began 8 to 12 hours after serum stimulation, its onset occurred prior to thymidine incorporation and the effect persisted for 28 hours. Determination of cell volume demonstrated an increase in size of DBcAMP treated chondrocytes between 8 to 12 hours, coincident with the onset of increased sulfate incorporation. These results are consistent with a model where matrix sulfated proteoglycan deposition by chondrocytes is mediated by intracellular cAMP levels and occurs in the G1 phase of the cell cycle.  相似文献   

3.
Proliferation of mesangial cells is a common feature of renal disease, and conditioned media from glomerular epithelial and endothelial cells have been found to contain heparin-like molecules that suppress proliferation of rat mesangial cells (RMC). We have partially characterized the glycosaminoglycans that are labeled with 35SO42? by RMC in culture at early passage and examined their ability to inhibit mitogenic stimulation of the cells. Four chondroitin/dermatan sulfate proteoglycans (CS/DSPG) were identified, the largest and smallest of which (Kd of 0.04 and 0.26 on Superose 6) were retained in the cell layer while the other two (Kd = 0.17 and 0.22) were secreted into the medium. Heparan sulfate proteoglycans (HSPG) with Kd values of 0.09, 0.13, and 0.39 were minor components of the cell layer, while a single heparan sulfate (Kd = 0.17) was recovered from the medium. After 16 h of labeling in serum-free medium, about 60% of macromolecular 35S was cell-associated and 40% was in the medium. Cell-associated label consisted of 7% CS/DSPG, 9% HSPG, and 84% free glycosaminoglycan chains (mostly CS/DS), whereas the medium contained 52% CS/DSPG, 17% HSPG, and approximately equal amounts of free HS and CS/DS chains. Bovine lung heparin (1 μg/ml) decreased by 45% the incorporation of [3H]-thymidine into DNA after release of serum-starved RMC from growth arrest. Heparin acted prior to the G1/S interface; arrest of the cells in early S phase with aphidicolin abrogated the heparin response. The endogenous HSPGs had a slight antimitogenic effect on the RMC, but heparan sulfate chains from both the medium and cell layer had a potent effect. On an equivalent mass basis, only the free glycosaminoglycan chains were more potent than heparin in this regard, decreasing thymidine incorporation by over 90% when present at 1 μg/ml. These results demonstrate that heparan sulfate glycosaminoglycans derived from mesangial proteoglycans are potential negative autocrine growth regulators. Proteoglycan metabolism releases these soluble heparan sulfate chains, determining the level of this activity. © 1994 wiley-Liss, Inc.  相似文献   

4.
We have reported that the monovalent ionophore monensin causes undersulfated chondroitin sulfate biosynthesis in cultured chondrocytes. In order to clarify the mechanism of this diminished sulfation, we have measured the rate of incorporation of sulfate into chondrocytes and assayed the cellular ATP levels. We have also measured sulfatase activity, the incorporation of 35SO4 into 3′-phosphoadenosine 5′-phospho[35S]sulfate and endogenous sulfotransferase activity in the cell-free extracts. We find that: (1) The incorporation of 35SO4 into the free sulfate pool in chondrocytes was not inhibited by monensin. (2) The ATP levels of monensin-treated chondrocytes were the same as control cells. (3) There was no sulfatase activity in both control and monensin-treated chondrocytes. (4) Enzymatic analyses revealed that 35SO4 incorporation into 3′-phosphoadenosine 5′-phospho[35S]sulfate and subsequent sulfotransferase activity were not inhibited in the presence of monensin. At present the most tenable hypothesis to account for monensin causing undersulfated chondroitin sulfate synthesis is that the ionophore impairs the access of proteoglycans to the sulfotransferases in the luminal walls of the Golgi structures.  相似文献   

5.
The effect of tunicamycin (TM) on the synthesis and secretion of sulfated proteoglycans and hyaluronate was examined in chick embryo fibroblasts and chondrocytes. The incorporation of the precursors [3H]glucosamine, [3H]mannose and [35S]sulfate into glycoconjugates in both the cell layer and medium of cultures was determined. In the chick embryo fibroblast, but not in the chondrocyte, synthesis of sulfated proteoglycan was inhibited 60–75% by TM (5 × 10−8 M), while synthesis of hyaluronate and protein was only inhibited slightly. The inhibition of sulfate incorporation into glycosaminoglycans of the chick embryo fibroblast was overcome to a great extent by addition of β-xyloside, which provides an exogenous initiator for chondroitin sulfate synthesis. TM treatment also altered cell shape and surface morphology in chick embryo fibroblasts, as observed by phase contrast and scanning electron microscopy (SEM). Cells treated with TM became rounded, and increased numbers of microvilli and blebs appeared on the cell surface. These alterations in cell morphology were reversed by removal of TM, but not by exogenous addition of xyloside, chondroitin sulfate or the adhesive cell surface glycoprotein fibronectin. These results demonstrate that TM inhibits synthesis of sulfated proteoglycans in the chick embryo fibroblast and causes a dramatic alteration in cell shape and surface morphology.  相似文献   

6.
Without increasing cell number, ovine growth hormone was shown to stimulate the incorporation of 25SO4 by cultured chick embryo chondrocytes into chondroitin sulfate. Since the stimulation of sulfation by growth hormone was abolished when the amino acid concentrations in the medium were doubled, the relationship between amino acids and growth hormone in promoting the synthesis of acid mucopolysaccharides was investigated. Comparison of the incorporation of various labeled amino acids into trichloroacetic acid-soluble and insoluble material revealed that growth hormone promoted the incorporation of only valine into trichloroacetic acid-insoluble material. Furthermore, growth hormone stimulated valine incorporation into both extracellular and intracellular protein, rather than preferentially into extracellular chondromucoprotein. Growth hormone gave a 4-fold stimulation of valine incorporation into collagen without stimulating collagen synthesis. That growth hormone enhances sulfation by stimulating valine availability was further supported by the observations: (a) doubling only the valine concentration in the medium enhanced sulfation; (b) in medium with twice the normal valine concentration, sulfation failed to be further stimulated with the addition of growth hormone; and (c) in medium with all the other amino acids except valine at twice normal concentrations, growth hormone enhanced sulfation. In addition the temporal relationships and synthetic events occurring between growth hormonealtered valine availability and enhanced chondromucoprotein synthesis were studied. It was found that growth hormone-promoted valine incorporation into acid-insoluble material is a rapid effect that can be detected by 10 min after hormone addition and does not require RNA synthesis. Increased valine availability is rapidly reversed after growth hormone removal ( ). On the other hand, growth hormone- and valine-enhanced chondromucoprotein synthesis are slower responses, taking over 24 hr of treatment for a maximal stimulation, and are mediated by RNA synthesis, as indicated by actinomycin D sensitivity. Enhanced chondromucoprotein synthesis is also relatively stable after removal of growth hormone or valine ( ).The evidence suggests that the availability of a single amino acid, valine, plays a regulatory role in the synthesis of a specialized cellular product and that growth hormone acts at some level to alter the availability of this essential amino acid.  相似文献   

7.
Addition of hydrocortisone to the medium of a clonal strain of rat pituitary cells (GH3) stimulated the rate of production of growth hormone. The stimulation had a lag period of about 24 hr, reached a maximum at 70–100 hr, and was observed at a hydrocortisone concentration as low as 5 x 10-8 M. Cells maximally stimulated with 3 x 10-6 M hydrocortisone produced 50–160 µg growth hormone/mg cell protein/24 hr. These rates were four to eight times those observed in control cells. At maximum stimulation, intracellular levels of growth hormone in both stimulated and control cells were equal to the amount secreted into the medium in about 15 min. Removal of hydrocortisone from the medium of GH3 cells caused a return of the rate of growth hormone production to that in control cells. Addition of hydrocortisone to the medium of cells growing exponentially with a population-doubling time of 60 hr caused both an increase in the doubling time to 90 hr and a stimulation of growth hormone production. Cycloheximide (3.6 x 10-5 M) and puromycin (3.7 x 10-4 M) suppressed incorporation of labeled amino acids into protein by 93 and 98%, respectively, and suppressed growth hormone production by stimulated and control cells by at least 94%.  相似文献   

8.
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis. Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).  相似文献   

9.
Balb/c 3T3 cells synthesize 5–10 times more 35SO42?-labeled extracellular proteoglycan per cell than do Balb/c 3T3 cells transformed by SV40 (SV3T3). The extracellular 35SO42?-labeled proteoglycans of the Balb/c 3T3 and SV3T3 cells differ markedly in their acid mucopolysaccharide composition. Extracellular Balb/c 3T3 proteoglycans contain about 70–80% chondroitin sulfate, most of which is chondroitin 4-sulfate, and small amounts of heparan sulfate and/or heparin. On the other hand, extracellular SV3T3 proteoglycans contain 65–75% heparan sulfate and/or heparin and less than 15% chondroitin sulfate. Analysis of extracellular 35SO42?-labeled proteoglycan by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that Balb/c 3T3 alone synthesizes a class of proteoglycans capable of migrating in a 10% separating gel. This class of proteoglycans, designated as fraction C, accounts for up to 45% of the total extracellular Balb/c 3T3 35SO42?-labeled proteoglycans and contains chondroitin sulfate exclusively. It is altogether absent in the extracellular SV3T3 proteoglycans. The absence of this and other classes of chondroitin sulfate-containing proteoglycans can account for the 5–10-fold decreased synthesis of 35SO42?-labeled proteoglycans by SV3T3 cells when compared to Balb/c 3T3 cells.  相似文献   

10.
The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605–617. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The study addressed the question of whether35SO4 labeled molecules that the have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a souluble fraction (soluble after centrifugation at 105,000g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000g) and a final 105,000g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatographys was resolved into a fraction of sulfated glycoproteins eluting at 0–0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32–0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated35SO4, showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the result support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system.  相似文献   

12.
Cultured smooth muscle cells from pig aorta arrested in G0 phase by serum deprivation were stimulated to proliferate by replacing the medium with one containing 10% serum. Studies in DNA replication and proliferation of cells showed a relatively good synchrony: 90% of the cells were in G1 phase for 16 h after addition of serum; they entered S phase between 18 and 24 h, completed S phase and traversed G2 phase between 24 and 30–32 h; 75% of these cells multiplied after 30–32 h and the remainder were blocked at the end of G2 phase. The synthesis and secretion of sulfated proteoglycans were examined throughout a full cell cycle using metabolic labelling with [35S]sulfate. Smooth muscle cells in G1 or G2 phase synthesized and secreted sulfated proteoglycans with a possible pause at the end of the G2 phase but at the beginning of the S phase and during mitosis the incorporation of [35S]sulfate into these macromolecules stopped entirely. Structural characteristics of sulfated proteoglycans secreted into the medium during G1 phase and an entire cell cycle were investigated. The proportion of proteoglycan complexes and the relative hydrodynamic size of monomers and of constituent subunits of complexes were determined after chromatography on Sepharose CL-2B and CL-6B columns run under both associative and dissociative conditions. No significant differences were observed for the periods of the cell cycle that were studied:
1. 1. [35S]Proteoglycan complexes represented at the end of G1 phase and of the cell cycle respectively 19 and 16% of the total [35S]proteoglycans secreted into the medium.
2. 2. More than 90% of the subunits, obtained after dissociation of complexes, were characterized by a similar kav after chromatography on Sepharose CL-2B columns eluted under dissociative conditions (kav 0.68 at the end of G1 phase and 0.65 at the end of full cell cycle).
3. 3. About 95% of monomers synthesized at the two stages of the cell cycle were eluted at kav 0.25 after chromatography on Sepharose CL-6B column run under associative conditions and were characterized by a similar glycosaminoglycan distribution. These results suggest that smooth muscle cells in culture liberate similar populations of proteoglycans into the medium during the G1 and G2 phases.
  相似文献   

13.
Heparan sulfate proteoglycans (HSPG) are involved in the regulation of cellular proliferation, differentiation, and migration. We have studied the effect of three inhibitors of proliferation on35S incorporation into HSPG of the breast cancer cell lines MCF-7 and MDA-MB-231 and the normal breast epithelial cells (NBEC). Transforming growth factor β-1 (TGFβ-1), which inhibits the proliferation of NBEC, but not of MCF-7 and MDA-MB-231, cells induced an increase in35S incorporation of HSPG in NBEC, but had no effect on cancer cells. Sodium butyrate (NaB), which inhibits NBEC as well as cancer cell proliferation, induced an increase in35S incorporation into HSPG in all cell types studied. In contrast, retinoic acid had no effect on HSPG of breast epithelial cells. Modification of HSPG induced by TGFβ-1 or NaB treatments in normal and breast cancer epithelial cells resulted in an increase in125I-fibroblast growth factor-2 (FGF-2) binding on HSPG. More importantly, NaB pretreatment resulted in an inhibition of the MCF-7 cell responsiveness to FGF-2, even though these cells remained sensitive to growth stimulation induced by serum or epidermal growth factor. These results indicate that changes in HSPG production are a key process involved in the mechanism of breast epithelial cell growth regulation.  相似文献   

14.
A Fisher rat thyroid cell line was maintained in culture and the cells were labeled with [3H]glucosamine, [35S]sulfate, and [35S]cysteine to examine the synthesis of proteoglycans. 3H and 35S radioactivity from these precursors were incorporated into both chondroitin sulfate (CS) and heparan sulfate (HS) proteoglycans. CS proteoglycans were almost exclusively secreted into the medium while HS proteoglycans remained mainly associated with the cell layer. Single chain glycosaminoglycans released by papain digestion or alkaline borohydride treatment of either the CS or HS proteoglycans had average molecular weights of approximately 30,000 on Sepharose CL-6B chromatography. Both CS and HS proteoglycans were relatively small and contained only one or two glycosaminoglycans chains. 3H and 35S incorporation into both CS and HS proteoglycans were increased by thyroid-stimulating hormone (TSH) in a dose-dependent manner, which is in part explained by an adenylate cyclase-dependent mechanism as indicated by a similar effect in response to dibutyryl cAMP. TSH enhanced the incorporation of 35S into CS from [35S]cysteine about 1.5-fold and that from [35S]sulfate about 2-fold. This result demonstrated that the increased 35S incorporation from the [35S]sulfate precursor reflects an actual increase in sulfate incorporation and is not simply a result from an apparent increase in specific activity of the phosphoadenosine phosphosulfate donor. Analysis of disaccharides from chondroitinase digests revealed that the proportion of non-sulfated, 4-sulfated, and 6-sulfated disaccharides was not altered appreciably by TSH. These results, together with the disproportionate increase in 3H incorporation into CS from [3H]glucosamine, indicated that TSH increased the specific activity of the 3H label as well. Chase experiments revealed that CS proteoglycans were rapidly (t1/2 = 15 min) secreted into the medium and that the degradation of cell-associated proteoglycans was enhanced by TSH.  相似文献   

15.
The effect of glucagon on the incorporation of U-14 C-labeled lactate, pyruvate or alanine into glucose has been studied using isolated hepatocytes from livers of fed rats. Rates of incorporation into glucose were about the same as observed in perfused liver preparations provided precautions were taken to avoid depletion of certain metabolities by the preparative procedures. With each substrate, stimulation of the incorporation into glucose by a maximally effective concentration of glucagon (10 nM) was associated with about a 75% reduction in the substrate concentration required for a half-maximal rate and with about a 30% increase in maximum rate. Consequently, the hormone caused a substantial (2–4-fold) stimulation when any one of the above substrates was present at a near physiological concentration, but brought about only a relatively small stimulation (1.4-fold) when very high substrate concentrations were used. Provision of cytoplasmic reducing equivalents (by ethanol addition), or of precursor for acetyl-coenzyme A formation (by acetate addition)-stimulated incorporation of labeled alanine into glucose and their effects were additive with that of glucagon. This suggested that provision of either of these intermediates was not a means by which the hormone increased the incorporation of labeled substrate into glucose. NH4+ stimulated the incorporation of 20 mM [U-14 C] lactate into glucose 2-fold, probably by promoting glutamate synthesis and thus enhancing the transamination of oxaloacetate to aspartate. Evidence was obtained to support the view that glucagon also increases glutamate production (presumably from endogenous protein). However, the stimulation of incorporatio into glucose from 20 mM [U-14 C] lactate by NH4+ plus glucagon was synergistic. This suggested that glucagon also stimulates the incorporation of labeled substrate into glucose by additional means. Stimulation of the incorporation of [U-14 C] alanine into glucose by β-hydroxybutyrate plus glucagon was also synergistic. This suggested that another action of glucagon may be to provide more intramitochondrial reducing potential.  相似文献   

16.
Previous studies of hyaluronan uptake and catabolism by lymph nodes indicated that the nodes might also add some HA of low molecular weight to the unabsorbed fraction that passes through from afferent to efferent lymph vessels.The ability of lymph nodes to synthesise HA and proteoglycans was therefore examined (i) by perfusion of [3H] acetate through an afferent lymph vessel in vivo, and recovery of labeled products from the efferent lymph vessel and from the node after perfusion; and (ii) by tissue culture of lymph nodes with [3H] acetate.Perfusion of lymph nodes with [3H] acetate in situ yielded: (a), in outflowing lymph, small amounts of chondroitin/dermatan sulfate within the first hour which continued to be produced for up to 24[emsp4 ]h; heparin in the second hour and HA in the third. In the nodes removed 17 to 19[emsp4 ]h later, equal amounts of hyaluronan and chondroitin/dermatan sulfate and heparan sulfate proteoglycans were detected. In the tissue culture of lymph nodes: (1) HA, heparin and proteoglycans of heparan sulfate and chondroitin/dermatan sulfate were released into the medium but in the cell extract only heparan sulfate proteoglycan was detected; and (ii) molecular weight of the released hyaluronan ranged widely but was mostly less than 4–5×105[emsp4 ]D; heparan sulfate proteoglycan was 2.8×104 to 9.4×105[emsp4 ]D; heparin 7.9×104[emsp4 ]D and chondroitin sulfate 1.3×104[emsp4 ]D, suggesting that the chondrotin sulfate were released from their proteoglycans core by enzymic degradation.It is concluded that lymph nodes can release HA, heparin, heparan sulfate and chondroitin/dermatan sulfate proteoglycans into efferent lymph but the amount of hyaluronan is likely to be small without immune or other stimulation and its molecular weight is lower than in other tissues.  相似文献   

17.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

18.
Rat chondrosarcoma chondrocytes were cultured in the presence of puromycin to induce premature termination of core protein precursor. The structure and function of intracellular and extracellular proteoglycans were assessed by molecular sieve chromatography and polyacrylamide gel electrophoresis. [3H]Serine incorporation was maximally inhibited by 3 × 10?4m puromycin but unaffected by 10 ?5m puromycin. Proteoglycans synthesized in the presence of puromycin exhibited increased monomer size due to increased chondroitin sulfate chain size, typical of proteoglycans synthesized in the presence of protein synthesis inhibitors, but no loss in ability to bind to hyaluronic acid; and no loss in core protein size was observed after treatment with chondroitinase. These data suggest that chondrocytes select only completed or nearly completed core protein molecules to process into proteoglycans.  相似文献   

19.
Beyond increased cAMP synthesis, calcium influx has been involved in signal transduction triggered by the gonadotropin follicle‐stimulating hormone (FSH), the main regulator of Sertoli cells functions. In order to delineate a possible involvement of calcium in the regulation of proteoglycan synthesis, we have examined the effect of low‐voltage‐activated calcium channel blocker verapamil on both [35S]‐sulfate and [3H]‐glucosamine incorporation into proteoglycan molecules neosynthesized by cultured Sertoli cells from 20‐day‐old rats. Verapamil induced a dose‐ and time‐dependent decrease in labeling of both secreted and cell‐associated proteoglycans, as determined by quantitative solid‐phase assay. This effect was mimicked by the addition of the calcium chelator EGTA, suggesting that verapamil effect resulted from the inhibition of transmembrane calcium influx. The decrease in apparent proteoglycan synthesis appeared to be attributable primarily to a lowering of the glycanation process, as shown by experiments using an exogenous acceptor for glycosaminoglycan synthesis. Moreover, verapamil induced a decrease in relative proportion of heparan sulfate proteoglycans in the cell layer. Pulse‐chase kinetics demonstrated that verapamil also altered proteoglycan catabolism, leading to glycosaminoglycan retention in the cell layer and inhibiting the proteoglycan desulfation step. We conclude that intracellular calcium is essential to maintain Sertoli cell proteoglycan expression and could thus be involved in the repression of Sertoli cell cAMP‐dependent syntheses such as estradiol production. J. Cell. Biochem. 76:322–331, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Summary The in vitro proliferations rates and ptoteoglycans synthesized by adult human gingival fibroblasts derived from six age- and sex-matched donors of healthy and chronically inflamed gingiva were analyzed. Fibroblasts from inflamed gingiva demonstrated a slower growth rate than cells from healthy tissue. The rate of incorporation of [35S]sulfate into cell layer-associated proteoglycans and the release of these macromolecules into the culture medium did not differ appreciably between the two groups of cells. Similarly, no detectable differences in the overall charge of the proteoglycans synthesized by normal and inflamed gingival fibroblasts, as assessed by their elution from DEAE-Sephacel, were noted. However, sepharose CL-4B chromatography revealed that the medium-associated proteoglycans made by the inflamed tissue fibroblasts were depleted in one species of chondroitin sulfate proteoglycans and contained more dermatan sulfate than did control cells. In addition, the intracellular proteoglycan pool was found to be greatly diminished in the inflamed tissue fibroblast cell layers. Glycosaminoglycan analysis of the proteoglycans confirmed these observations. Compared to normal gingival fibroblasts, the inflamed tissue fibroblasts released less heparan sulfate into the medium. Additionally, increased levels of dermatan sulfate and depleted amounts of chondroitin sulfate in the medium of inflamed gingival cells were noted. The observed changes were stable through several transfers in culture and indicate that chronically inflamed tissue may contain fibroblasts mainfesting a heritable phenotype differing from fibroblasts in normal connective tissue. P. Mark Bartold was supported by a C. J. Martin Fellowship for the National Health and Medical Research Council of Australia. This work was also supported by grants DE-03301 and DE-02600 from the National Institutes of Health, Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号