首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the seeds of Chenopodium album L. visible phenomena preceding the final protrusion of the radicle enable a clear distinction between the induction and the progress of growth inside the covering structures. The light-dependent induction of radicle growth is not inhibited by exogenously applied abscisic acid (ABA). Experiments with 1-14C-ABA ruled out a lack of penetration of the hormone. However, ABA does inhibit the growth of the radicle before final protrusion. This inhibition and the uptake of 1-14C-ABA are enhanced at lower pH values, indicating absorption of the undissociated molecule. The uptake of labeled hormone strongly increases during the growth of the radicle. This increase is not merely a reflection of extra water uptake. Seeds of different degrees of dormancy contain equallly low levels of endogenous ABA. Much higher levels of ABA in the seeds were obtained by exogenous application of the hormone but these levels stills do not prevent the breaking the dormancy by light. It is concluded that ABA has no function in the regulation of dormancy in C. album seeds.  相似文献   

3.
In embryo axes excised from mature horse chestnut (Aesculus hippocastanum L.) seeds, both freshly-fallen and subjected to cold stratification, the ability for growth was studied. While excised axes were kept on water at 28°C for 3 days, their fresh weight and length increased, the polypeptide composition of soluble proteins changed, the content of some heat-stable polypeptides decreased, and the capacity for protein synthesis in vivo retained. All these processes were similar to those in the axes of intact seeds during stratification until radicle protrusion. Growth of excised axes accelerated with the increasing duration of stratification. Cycloheximide (50 mg/l) and -amanitin (7 mg/l) inhibited axis growth, but an inhibitor of ABA synthesis fluridone (5 mg/l) and a natural cytokinin dihydrozeatin (10–5 M) did not influence the growth rate. The growth capacity of axes excised from dormant and germinating horse chestnut seeds indicates the absence of dormancy in the axes of mature seeds. ABA (10–5 M) suppressed completely the growth of axes detached from seeds experiencing cold stratification but still not germinating, although protein synthesis was not inhibited. The axes excised from the seeds after radicle emergence were insensitive to ABA and grew actively in its presence. ABA-induced growth inhibition might be related to the suppressed synthesis of minor polypeptides required for growth or to the activated synthesis of some growth-retarding proteins. The conclusion was drawn that the excised axes could be used as a model for studying the processes preceding visible germination of recalcitrant seeds.  相似文献   

4.
It was shown that the content of carbohydrates and their composition in embryo axes of horse chestnut seeds changed as seeds acquired a capability of dormancy release and germination. Sucrose prevailed among carbohydrates, comprising to 150–160 mg/g dry wt. During the first half of the seed imbibition time, oligosaccharides, namely raffinose and stachyose, degraded, whereas the contents of glucose and fructose were very low. The second half of the imbibition period (until radicle protrusion) was characterized by a cessation of oligosaccharide breakdown and accumulation of monosaccharides. Carbohydrate balance showed that the contribution of oligosaccharide breakdown to sucrose and monosaccharide accumulation was rather small, and monosaccharides accumulated mostly at the expense of sucrose gradually coming from cotyledons during imbibition. The trend of carbohydrate metabolism in imbibing axial organs was similar during the entire period of a seed dormancy release in the course of stratification. A readiness for the commencement of these processes during the entire dormancy period implies that carbohydrate conversions in embryo axes are not a trigger for a dormancy release. Monosaccharide accumulation in embryo axes before radicle protrusion produces an increase in the osmotic pressure, as compared to that provided by sucrose, by approximately 20%. Recalcitrance of the horse chestnut seeds is discussed in relation to the role of carbohydrates and other endogenous osmotica in the establishment of osmotic properties.  相似文献   

5.
Seed dormancy is an important developmental process that prevents pre-harvest sprouting in many grains and other seeds. Abscisic acid (ABA), a plant hormone, plays a crucial role in regulating dormancy but the underlying molecular regulatory mechanisms are not fully understood. An Arabidopsis zinc-finger gene, MEDIATOR OF ABA-REGULATED DORMANCY 1 ( MARD1 ) was identified and functionally analyzed. MARD1 expression is up-regulated by ABA. A T-DNA insertion in the promoter region downstream of two ABA-responsive elements (ABREs) renders MARD1 unable to respond to ABA. The mard1 seeds are less dormant and germinate in total darkness; their germination is resistant to external ABA at the stage of radicle protrusion. These results suggest that this novel zinc-finger protein with a proline-rich N-terminus is an important downstream component of the ABA signaling pathway that mediates ABA-regulated seed dormancy in Arabidopsis.  相似文献   

6.
珍稀濒危植物珙桐种子休眠萌发过程中内源激素的变化   总被引:7,自引:0,他引:7  
珙桐是我国特有珍稀濒危植物,休眠期长且具二次休眠现象。将处于休眠萌发过程中的珙桐种子依据胚根长度划分为4个阶段,利用高效液相色谱(HPLC)测定各阶段种子及其内果皮中ABA(脱落酸)、GA(赤霉素)、KT(细胞分裂素)、IAA(3-吲哚乙酸)4种内源激素含量,分析其比值动态变化,并与幼苗阶段进行比较。结果显示:未破壳种子的内果皮中内源激素含量以ABA最高,其次是GA、IAA、KT,随着种子破壳后四种激素含量显著降低。除ABA外,种子中GA、IAA和KT含量随着胚根的伸长逐渐升高,但仍低于幼苗阶段。此外,随着胚根伸长,种子中GA/ABA、IAA/ABA、KT/ABA比值逐渐增大,其中以GA/ABA的变化最显著。因此,珙桐种子的休眠和萌发可能主要受ABA和GA的平衡和拮抗来调控。  相似文献   

7.
药用植物黄精种子休眠特性研究   总被引:5,自引:0,他引:5  
从黄精(Polygonatum sibiricum Red.)种子的形态、解剖结构、果实及种子部分抑制物质的生物测定和种子成熟过程中内源激素ABA含量的变化等方面研究种子的休眠特性。结果表明:黄精种子休眠属于综合休眠,首先黄精种子秋季采收后其种胚存在生理后熟,是导致黄精种子深休眠的主要原因;其次黄精种子的胚乳细胞小、细胞质浓厚、排列致密,胞间隙小,影响物质的共质体运输;果实及种子中含有不同程度的发芽抑制物质;种子成熟时ABA含量升高是导致种子休眠的又一原因。  相似文献   

8.
This is the first characterization of proteins from axial organs of recalcitrant horse chestnut seeds during deep dormancy, dormancy release, and germination. We demonstrated that, during the entire period of cold stratification, axial organs were enriched in easily soluble albumin-like proteins and almost devoid of globulins. About 80% of the total protein was found in the cytosol. Approximately one third of cytosolic proteins were heat-stable polypeptides, which were major components of total proteins. Heat-stable proteins comprised three groups of polypeptides with mol wts of 52–54, 24–25, and 6–12 kD with a predominance of low-molecular-weight proteins. The polypeptide patterns of heat-stable and thermolabile proteins differed strikingly. Heat-stable proteins accumulated in axes during the late seed maturation, comprising more than 30% of the total protein in axes of mature seeds. The polypeptide patterns of the total protein of axial organs and its particular fractions did not change in the course of seed dormancy and release. At early germination, the content of heat-stable proteins in axes decreased and their polypeptide pattern changed both in the cytosol and cell structures. We believe that at least some heat-stable proteins can function as storage proteins in the axes. Localization of storage proteins in the cells of axial organs and the role of heat-stable proteins in recalcitrant seeds are discussed.  相似文献   

9.
Studies on seed storage of Chionanthus retusus Lindl. & Paxt. revealed an orthodox behavior, one which showed both desiccation and freezing tolerance. An epicotyl after-ripening dormancy was expressed in C. retusus seeds by slow growth of the shoot apex relative to more rapid growth of the radicle when seeds were germinated at 30/20 degrees C. Although these seeds exhibit radicle protrusion, they must be after-ripened for another 8-10 weeks at 30/20 degrees C in order to obtain normal shoot growth. Removal of the endosperm, however, quickly stimulated cotyledon and shoot emergence without the additional after-ripening. Water-soluble glucoside phenolics, GL-3, Nuzhenide, ligustroside and oleoside dimethyl ester are present at relatively high levels in endosperm of freshly harvested seeds. These glucoside phenolics are excreted from the endosperm during subsequent after-ripening. Embryo and endosperm tissue from seed germinating at 30/20 degrees C (germination being defined by protrusion of the radicle) had a 10 times lower abscisic acid (ABA) content than similar tissues from freshly harvested mature seed. However, no shoot growth occurred even with the 10-fold reduction in ABA and a concomitant increase in endogenous gibberellins A1, A4 and A20. Thus, epicotyl dormancy during the first 8 weeks of after-ripening at 30/20 degrees C may be controlled by factors other than high ABA, i.e., the slow development of the shoot apex following radicle protrusion may be controlled more by high levels of glucoside phenolics than by diminished ABA and elevated GA levels.  相似文献   

10.
The content and temporal changes in the endogenous IAA, cytokinins, gibberellin-like compounds (GLC), and ABA were determined during horse chestnut (Aesculus hippocastanum L.) seed development (the stages of embryo axis development, its active growth, and storage compound deposition). The active growth of the embryo was characterized by the highest amounts of free phytohormones. Later, by the end of seed maturation, we observed the accumulation of the bound forms of IAA and ABA and a trend to a decrease in the content of free IAA, zeatin, and GLC (butanol fraction). The electron-microscopic examination of the embryo from the mature seed demonstrated that some structural components of the cytoplasm were similar in the cells of embryo axes and cotyledons. During the entire period of maturation, the embryo cells preserved native vacuoles and protein bodies were not formed. Thus, the structure of cotyledonary and axial cells and the distribution of free and bound phytohormones in the horse-chestnut seeds are similar to those in maturing seeds characterized by exogenous dormancy.  相似文献   

11.
It is not known how embryos of seeds of the Pinaceae protrude from their enclosing tissues to complete germination. Prior to protrusion of the radicle there is an increase in endo-β-1,4-mannanase (EC 3.2.1.78) activity associated with weakening of the micropylar megagametophyte/nucellus from seeds of white spruce ( Picea glauca [Moench.] Voss). Mannanase activity is present as three isoforms (pI values 5.0, 4.8, 4.7) in both the embryo and surrounding structures (megagametophyte and nucellus) prior to and during imbibition. Activity of all the isoforms increases in the chalazal and micropylar megagametophyte during germination. Activity then declines after the testa splits, typically 1 day prior to radicle protrusion, due partially to its leaching from the seed into the surrounding water. Activity increases in the cotyledons and axis as the embryo commences elongation. Seeds from dormant seedlots exhibit a lower germination percentage, relative to seeds from nondormant seedlots, and the force necessary for the embryo to puncture the surrounding structures tends to be greater. Although similar mannanase activities are present in unimbibed seeds of dormant and nondormant seedlots, during germination, enzyme activity in seeds of dormant seedlots is lower. Moist chilling alleviates dormancy in the seeds of the Pinaceae and, during 3 weeks of this treatment, mannanase activity slowly increases. After 3 weeks of moist chilling and regardless of whether the seedlot was dormant or not prior to moist chilling, the force necessary to puncture the micropylar megagametophyte and nucellus is lower, and the speed of germination greater. Seeds from previously dormant seedlots also complete germination to a greater percentage, relative to unchilled seeds from dormant seedlots. Upon transfer to 25°C, mannanase activity in moist-chilled seeds decreases during germination of all seedlots regardless of their previous dormancy status.  相似文献   

12.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

13.
以吉林珲春自然群落的野生玫瑰(Rosa rugosa Thunb.)为试验材料,探究野生玫瑰在果实形成过程中种子的发育及休眠性的形成和变化。选取青果期(1~35 d)、转色期(35~60 d)、红果期(60~75 d)的果实及种子,结合形态学、组织细胞学观察法及高效液相色谱技术,对果实各发育时期的种子形态、种胚及内果皮的发育进行研究,并分析种子内源激素含量变化与果实发育、种子休眠之间的关系。结果表明:果实和种子在青果期(1~35 d)时发育速度最快,种胚在花后24 d发育完全,种子不存在形态休眠。花后24 d内果皮开始沉积木质素并逐渐木质化,种子开始产生机械休眠。种子激素含量的变化与果实的发育、转色及内果皮的木质化密切相关,种子内源GA3和ABA含量在青果期(1~35 d)达到峰值,内源IAA含量在果实转色期(35~60 d)达到最大值,高浓度的ABA含量是种子尚未脱离果实时便已进入生理休眠的主要原因。  相似文献   

14.
The dormancy breaking and storage behavior of Garcinia cowa Roxb. seeds were investigated.The seeds of G. cowa had 8-11 months dormancy in their natural habitat. Seeds were matured and dispersed at the end of the rainy season (mid-late August to late September) and were scatter-hoarded by rodents as food for winter after the seeds had fallen to the ground. Seedlings often emerged in the forest during the rainy season (May to August) the following year. Intact seeds of G. cowa failed to germinate after being sown at 30 ℃ for 120 d and the mean germination time (MGT) of seeds cultured in a shade (50% sunlight)nursery was 252 d. The most effective method of breaking dormancy was to remove the seed coat totally,which reduced the MGT to 13 d at 30 ℃. Germination was also promoted by partial removal of the seed coat (excising the hilum and exposing the radicle) and chemical scarification (immersion in 1% H2O2 for 1 d).Unscarified seeds take up water rapidly in the first 96 h, but water was absorbed by the outside seed coat,without penetrating through it. The moisture content (MC) of G. cowa seeds was high (50% in fresh weight)at shedding. The seeds could tolerate desiccation to some extent, until the MC reached approximately 40%;below that, the viability decreases rapidly and all seeds died at approximately 17% of MC. Seed viability decreased rapidly when seeds were chilled at 4 ℃; germination was 2% after storage for 1 week. Even stored at 10 ℃, seeds began to be damaged after 4 weeks. Seed storage for 1 yr revealed that in both dry (relative humidity (35 ± 5)%) and moist (wet sand) storage conditions, seed viability declined, but germination percentages for seeds stored under moist conditions are better than for seed stored under dry conditions.Because of their low tolerance to desiccation, marked chilling sensitivity and relatively short lifespan, G.cowa seeds should be classified into the tropical recalcitrant category. The ecological implications of dormant recalcitrant seeds and cues on storing recalcitrant seeds were discussed.  相似文献   

15.
The germination process of mustard seeds (Sinapis alba L.) has been characterized by the time courses of water uptake, rupturing of the seed coat (12 hours after sowing), onset of axis growth (18 hours after sowing), and the point of no return, where the seeds lose the ability to survive redesiccation (12 to 24 hours after sowing, depending on embryo part). Abscisic acid (ABA) reversibly arrests embryo development at the brink of radicle growth initiation, inhibiting the water uptake which accompanies embryo growth. Seeds which have been kept dormant by ABA for several days will, after removal of the hormone, rapidly take up water and continue the germination process. Seeds which have been preincubated in water lose the sensitivity to be arrested by ABA after about 12 hours after sowing. This escape from ABA-mediated dormancy is not due to an inactivation of the hormone but to a loss of competence to respond to ABA during the course of germination. The sensitivity to ABA can be restored in these seeds by redrying. It is concluded that a primary action of ABA in inhibiting seed germination is the control of water uptake of the embryo tissues rather than the control of DNA, RNA, or protein syntheses.  相似文献   

16.
At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.  相似文献   

17.
It is generally believed that seed dormancy release is terminated by germination and that this process is controlled by phytohormones. Most attention was paid to gibberellins (GAs) because treatment with GAs is most frequently applied for seed dormancy breaking. The review characterizes the hormonal regulation of seed dormancy and its release, as exemplified by arabidopsis seeds possessing non-deep physiological dormancy. Dormancy release occurs under the influence of low temperature and/or illumination with red light. Two main trends are typical of this process: (1) a decrease in ABA content and blocking of signal transduction from ABA, and (2) GA synthesis and activation of GA signaling pathway. Dormancy release ends with the GA-induced syntheses of some proteins, enzymes in particular, required for the start of germination. Quiescent seeds are capable of realizing the germination program without hormonal induction, due to nothing but seed hydration. In imbibing seeds, the triggering role of water lies in the successive activation of basic metabolic systems after attaining the water content thresholds characteristic of these systems and in preparing cells of embryo axial organs for germination. Thus, seed dormancy release is controlled by phytohormones, whereas subsequent germination manifesting itself as the initiation of cell elongation in embryo axes is controlled by water inflow.  相似文献   

18.
Germination of seeds proceeds in general in two phases, an initial imbibition phase and a subsequent growth phase. In grasses like barley, the latter phase is evident as the emergence of the embryonic root (radicle). The hormone abscisic acid (ABA) inhibits germination because it prevents the embryo from entering and completing the growth phase. Genetic and physiological studies have identified many steps in the ABA signal transduction cascade, but how it prevents radicle elongation is still not clear. For elongation growth to proceed, uptake of osmotically active substances (mainly K(+)) is essential. Therefore, we have addressed the question of how the activity of K(+) permeable ion channels in the plasma membrane of radicle cells is regulated under conditions of slow (+ABA) and rapid germination (+fusicoccin). We found that ABA arrests radicle growth, inhibits net K(+) uptake and reduces the activity of K(+) (in) channels as measured with the patch-clamp technique. In contrast, fusicoccin (FC), a well-known stimulator of germination, stimulates radicle growth, net K(+) uptake and reduces the activity of K(+) (out) channels. Both types of channels are under the control of 14-3-3 proteins, known as integral components of signal transduction pathways and instrumental in FC action. Intriguingly, 14-3-3 affected both channels in an opposite fashion: whereas K(+) (in) channel activity was fully dependent upon 14-3-3 proteins, K(+) (out) channel activity was reduced by 14-3-3 proteins by 60%. Together with previous data showing that 14-3-3 proteins control the activity of the plasma membrane H(+)-ATPase, this makes 14-3-3 a prime candidate for molecular master regulator of the cellular osmo-pump. Regulation of the osmo-pump activity by ABA and FC is an important mechanism in controlling the growth of the embryonic root during seed germination.  相似文献   

19.
Protein Synthesis in Dormant and Non-Dormant Cocklebur Seed Segments   总被引:1,自引:0,他引:1  
Using the axial and cotyledonary segments of lower cocklebur (Xanthium pensylvanicum Wallr.) seeds, protein synthesis as shown by incorporation of radioactive leucine was examined in relation to their dormant status. During the first 9 h of water imbibition, the protein synthesis was higher in the dormant axes than in the non-dormant, after- ripened ones. When imbibed for more than 12 h non-dormant axes had a higher activity than dormant ones. This was also the case with the cotyledonary segments. Cyctoheximide, an inhibitor of protein synthesis, blocked protein synthesis in the axial tissue regardless of its dormant status, and thereby inhibited germination of the non-dormant seeds. In the dormant seeds, however, cycloheximide at 3 mM slightly stimulated germination without stimulating the C2H4 production. Based on these results, it is suggested that in cocklebur seeds there may be some proteinaceous system which is involved in the maintenance of dormancy.  相似文献   

20.
Changes in the abscisic acid (ABA) levels in embryo axes of seeds, belonging to the orthodox (Norway maple — Acer platanoides L.) and recalcitrant (sycamore — Acer pseudoplatanus L.) categories, were investigated throughout maturation using an ELISA (enzyme-linked immunosorbent assay) test. Concentration of ABA in embryo axes substantially differed depending on species and sampling date. ABA was always higher in Norway maple except at the end of seed maturation when ABA content was similar in both species. During maturation ABA decreased in both species but the decline was more marked in Norway maple than in sycamore (11 vs. 3 fold). These species also differed in the pattern of ABA changes, which in sycamore embryo axes was very regular, while in Norway maple a sharp decrease was recorded after acquisition by the seeds of tolerance to desiccation. Dehydration of embryo axes of Norway maple caused a further significant decrease of ABA level. In contrast, in dehydrated sycamore embryo axes ABA content did not decrease, but slightly increased. The role of ABA in desiccation tolerance and dormancy of Norway maple and sycamore seeds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号