首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
TFF3 plays an important role in the protection and repair of the gastrointestinal mucosa. The molecular mechanisms of TFF function, however, are still largely unknown. Increasing evidence indicates that apart from stabilizing mucosal mucins TFF3 induces cellular signals that modulate cell–cell junctions of epithelia. In transfected HT29/B6 and MDCK cells stably expressing FLAG-tagged human TFF3 we have recently shown that TFF3 down-regulates E-cadherin, impairs the function of adherens junctions and thus facilitates cell migration in wounded epithelial cell layers. Here we investigate TFF3-induced effects on the composition and function of tight junctions in these cells. TFF3 increased the cellular level of tightening claudin-1 and decreased the amount of claudin-2 known to form cation-selective channels. Expression of ZO-1, ZO-2 and occludin was not altered. The change in claudin-1 and -2 expression in TFF3-expressing HT29/B6 cells was accompanied by an increase in the transepithelial resistance in confluent monolayers of these cells. These data suggest that TFF3 plays a role in the regulation of intestinal barrier function by altering the claudin composition within tight junctions thus decreasing paracellular permeability of the intestinal mucosa.  相似文献   

3.
The serrated polyp-neoplasia pathway is a novel concept that has been demonstrated to differ from the conventional adenoma-carcinoma pathway. To characterize the phenotypic patterns of differentiation in colorectal serrated polyps, we examined the immunohistochemical expression profile of gastric (MUC5AC, TFF1, MUC6, GlcNAcα1 → 4Gal → R, and PDX1) and intestinal (MUC2, TFF3, and CDX2) epithelial markers in 15 hyperplastic polyps (HPs), 29 sessile serrated adenomas (SSAs),12 traditional serrated adenomas (TSAs), and 16 conventional adenomas (CAs). MUC5AC and TFF1 were upregulated in the HPs, SSAs, and TSAs. MUC6 was expressed in the HPs and SSAs. GlcNAcα1 → 4Gal → R was expressed only in the SSAs. Although MUC2 expression was preserved, TFF3 was downregulated in the HPs, SSAs, and TSAs. PDX1 was upregulated in the HPs, SSAs, and TSAs. On the other hand, CDX2 was downregulated in the HPs and SSAs. The colorectal serrated polyps showed higher expression of gastric makers than CAs. The HPs and SSAs showed gastric and intestinal mixed phenotype expression with gastric pyloric organoid differentiation and almost identical, but different from the TSAs, marker profile. PDX1 up-regulation and CDX2 down-regulation could be important for the induction of a gastric pyloric pattern of cell differentiation in colorectal serrated polyps.  相似文献   

4.
5.
The CDX2 and CDX1 homeobox genes have respectively a tumour suppressor and proliferative role in the intestinal epithelium. We analyzed DNA methylation and histones modifications associated with CDX2 and CDX1 promoters in two human colon cancer cell lines expressing differentially these genes, Caco2/TC7 [CDX2 positive-CDX1 negative] and HT29 [CDX2 negative-CDX1 negative] cells. Chromatin immunoprecipitation experiments indicated that CDX2 and CDX1 gene expression correlated with a histone modifications pattern characterizing active chromatin (H3K4 trimethylated and H3 acetylated). Bisulfite DNA sequencing and methylation-specific PCR showed that CDX2 and CDX1 promoters display no methylation in HT29 cells even though both genes are not expressed. In contrast, the CDX1 promoter is methylated in Caco2/TC7. DNA demethylation by 5aza-dC or the combination of 5aza-dC plus SAHA, an inhibitor of histone deacetylases, restored CDX1 expression in Caco2/TC7 cells but these treatments were inefficient on both CDX2 and CDX1 in HT29 cells. Thus, in colon cancer cells the changes in chromatin conformation are heterogeneous and repression of CDX2 and CDX1 in HT29 cells is not due to epigenetic mechanisms. In vivo, dietary deprivation of methyl groups in rats upregulated CDX1 mRNA and downregulated to a lesser extent CDX2 mRNA expression. Moreover, methyl group deprivation downregulated CDX2 protein by changing its phosphorylation pattern. The changes in CDX2 and CDX1 expression determined by methyl group deprivation may constitute one of the mechanisms sustaining the protective role attributed to folate in colon cancer.  相似文献   

6.
7.
8.
9.
10.
The trefoil factor (TFF) family, which comprises TFF1, TFF2 and TFF3, plays an essential role in epithelial regeneration within the gastrointestinal tract. All three TFFs are present in human saliva; TFF3 is the predominant trefoil peptide. Little is known about the expression and tissue distribution of TFFs in rats, which are commonly used as a model system for human studies. We investigated the localization of the TFF genes that encode secretory peptides in rat submandibular glands (SMG). All three TFFs were expressed in rat SMG, although their location varied. Substantial amounts of TFF1 were detected only in the cytoplasm of epithelial cells in the SMG granular convoluted tubules (GCT), while TFF2 and TFF3 were widely distributed in the cytoplasm of epithelial cells of intercalated ducts (ID), striated ducts (SD) and interlobular ducts (ILD). The three TFFs also were detected especially in the lumens of the SD and ILD. Semi-quantitative RT-PCR and in situ hybridization experiments confirmed TFF1, TFF2 and TFF3 mRNA expressions in the SMG. Greater expression of TFF peptides and mRNA was observed in male rats than in females. The broad expression of TFFs in rat SMG cells and lumens suggests that TFFs function in this organ by their secretion into the duct lumens. We also found differences in TFF expression profiles between rat and human SMG; therefore, caution should be exercised when using rats as a model for human TFF studies.  相似文献   

11.
12.
13.
14.
In many cases, the process of cancer cell differentiation is associated with the programmed cell death. In the present study, interestingly, we found that eupatilin, one of the pharmacologically active ingredients of Artemisia asiatica that has been reported to induce apoptosis in human gastric cancer AGS cells, also triggers differentiation of these cells. Treatment of AGS cells with eupatilin induced cell cycle arrest at the G1 phase with the concomitant induction of p21cip1, a cell cycle inhibitor. This led us to test whether eupatilin may trigger AGS cells to differentiate into the matured phenotypes of epithelial cells and this phenomenon may be coupled to the apoptosis. Eupatilin induced changes of AGS cells to a more flattened morphology with increased cell size, granularity, and mitochondrial mass. It also markedly induced trefoil factor 1 (TFF1), a gene responsible for the gastrointestinal cell differentiation. Eupatilin dramatically induced redistribution of tight junction proteins such as occludin and ZO-1, and F-actin at the junctional region between cells. It also induced phosphorylation of extracellular signal-regulated kinase 2 and p38 kinase. Blockade of ERK signaling by PD098059 or the dominant-negative ERK2 significantly reduced eupatilin-induced TFF1 and p21 expression as well as ZO-1 redistribution, indicating that ERK cascades may mediate eupatilin-induced AGS cell differentiation. Collectively, our results suggest that eupatilin acts as a novel anti-tumor agent by inducing differentiation of gastrointestinal cancer cells rather than its direct role in inducing apoptotic cell death.  相似文献   

15.
16.
17.
18.
19.
Trefoil factor 3 (TFF3) is a member of the TFF-domain peptide family and essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. However, the role of TFF3 and its downstream regulating mechanisms in cancer cell migration remain unclear. We previously reported that TFF3 prolonged the up-regulation of Twist protein to modulate IL-8 secretion in intestinal epithelial cells. In this study, we investigated the role of Twist protein in TFF3-induced migration of SGC7901 cells. While Twist was activated by TFF3, siRNA-mediated knockdown of Twist abolished TFF3-induced cell migration. Furthermore, the migration related marker CK-8 as well as ZO-1 and MMP-9 was also regulated by TFF3 via a Twist-dependent mechanism. Our study suggests that Twist, as an important potential downstream effector, plays a key role in TFF3-modulated metastasis in gastric cancer and can be a promising therapeutic target against intestinal-type gastric cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号