首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Krivandin AV  Muranov KO 《Biofizika》1999,44(6):1088-1093
The supramolecular structure of crystallins in intact ocular lenses of carp, frog and rat as well as in the interior (nuclear) and outer (cortical) parts of these lenses was studied by the small-angle X-ray scattering method. The results show that the supramolecular structure of crystallins substantially varies both in lenses of different vertebrate species and in various parts of the same lens. In carp lens and in the cortical part of rat lens, crystallins have an ordered supramolecular structure, as indicated by a small-angle X-ray diffraction maximum in the region of Bragg distances 15-20 nm, whereas in frog lens and in the nuclear part of rat lens, the supramolecular structure of these proteins is disordered. The power-law X-ray scattering by rat lens nucleus may be evidence of fractal structures in the lens. A comparison of these results with literary data indicates that there is no obvious correlation between the type of supramolecular structure of crystallins and their polypeptide composition in lenses of different vertebrate species. The results suggest that the supramolecular ordering (short-range order) of crystallins is not a necessary condition for lens transparency.  相似文献   

2.
It is known that human lenses increase in color and fluorescence with age, but the molecular basis for this is not well understood. We demonstrate here that proteins isolated from human lenses contain significant levels of the UV filter kynurenine covalently bound to histidine and lysine residues. Identification was confirmed by synthesis of the kynurenine amino acid adducts and comparison of the chromatographic retention times and mass spectra of these authentic standards with those of corresponding adducts isolated from human lenses following acid hydrolysis. Using calf lens proteins as a model, covalent binding of kynurenine to lens proteins has been shown to proceed via side chain deamination in a manner analogous to that observed for the related UV filter, 3-hydroxykynurenine O-beta-D-glucoside. Levels of histidylkynurenine and lysylkynurenine were low in human lenses in subjects younger than 30, but thereafter increased in concentration with the age of the individual. Post-translational modification of lens proteins by tryptophan metabolites therefore appears to be responsible, at least in part, for the age-dependent increase in coloration and fluorescence of the human lens, and this process may also be important in other tissues in which up-regulation of tryptophan catabolism occurs.  相似文献   

3.
Volume change of the ocular lens during accommodation   总被引:1,自引:0,他引:1  
During accommodation, mammalian lenses change shape from a rounder configuration (near focusing) to a flatter one (distance focusing). Thus the lens must have the capacity to change its volume, capsular surface area, or both. Because lens topology is similar to a torus, we developed an approach that allows volume determination from the lens cross-sectional area (CSA). The CSA was obtained from photographs taken perpendicularly to the lenticular anterior-posterior (A-P) axis and computed with software. We calculated the volume of isolated bovine lenses in conditions simulating accommodation by forcing shape changes with a custom-built stretching device in which the ciliary body-zonulae-lens complex (CB-Z-L) was placed. Two measurements were taken (CSA and center of mass) to calculate volume. Mechanically stretching the CB-Z-L increased the equatorial length and decreased the A-P length, CSA, and lens volume. The control parameters were restored when the lenses were stretched and relaxed in an aqueous physiological solution, but not when submerged in oil, a condition with which fluid leaves the lens and does not reenter. This suggests that changes in lens CSA previously observed in humans could have resulted from fluid movement out of the lens. Thus accommodation may involve changes not only in capsular surface but also in volume. Furthermore, we calculated theoretical volume changes during accommodation in models of human lenses using published structural parameters. In conclusion, we suggest that impediments to fluid flow between the aquaporin-rich lens fibers and the lens surface could contribute to the aging-related loss of accommodative power. lens volume calculation; intralenticular fluid movement; presbyopia; mammalian lens  相似文献   

4.
The possibility of proteinase inhibitory activities in lenses measured with synthetic substrates being spurious, due to the effective competition of lens proteins as substrates for the target enzymes, was investigated. Goat, sheep and human cataractous lens proteins were found to be poor substrates for trypsin, elastase and papain compared to casein or bovine serum albumin. Further, the inhibition of elastase catalyzed hydrolysis of succinyl trialanyl p-nitroanilide by casein (500 μg, 53%) and albumin (500 μg, 49%) and of trypsin-catalyzed hydrolysis of benzoyl argininep-nitroanilide by albumin (1 mg, 24%) were significant only at high protein concentrations. These data indicated that the relatively high antielastase and antitryptic activities observed in human cataractous lenses were real. On the other hand, coincident lens protein hydrolysis elevating the true antitryptic and antielastase activities in goat and sheep lenses (that have low activities) could not be ruled out The lesser papain inhibitory activities observed in lenses when albumin was used as substrate compared to activities with benzoyl arginine p-nitroanilide as substrate, appeared to be partly due to lens protein hydrolysis masking the actual inhibition in the former method. Preincubation of goat, sheep and human lens extracts with trypsin for 1 h resulted in complete loss of antitryptic and antielastase activity except in the case of human lens antielastase activity which underwent 50% loss. Papain inhibitory activity was fully stable. Similar papain treatment caused loss of 80–100% of antielastase activity and 45–55% loss of antitryptic activity.  相似文献   

5.
alphaA-crystallin is a major protein component of the human lens. It is known to undergo posttranslational modification. This study was done to further elucidate the temporal and spatial nature of these posttranslational modifications and to correlate the modified forms with electrophoretic migration. We dissected normal human lenses into concentric shells of fiber cells, separated the proteins by two-dimensional electrophoresis, and identified modified forms by mass spectrometry. We found that alphaA-crystallin migrated as a major spot and in over 20 additional protein spots. The extent of modification correlated with the age of the fiber cells and the depth within a lens. A correlation was also seen between these parameters and the concentration of modified forms that had full-length sequences but migrated at more acidic positions. These proteins were phosphorylated, acetylated, and/or deamidated. A few proteins migrated to a more basic position than the major form of alphaA-crystallin. The locations of several species that were truncated after C-terminal residues Ser172 and Ser162 were identified. Each of these species had intact N termini. The similarity of the C-terminal cleavage sites found in alphaA- and alphaB-crystallins was noted.  相似文献   

6.
7.
Lens regeneration studies in the adult newt suggest that molecular aspects of lens regeneration are complete within 5 weeks of lentectomy. However, very little is known about the optical properties of the regenerated lens. In an aquatic environment, the lens accounts for almost all of the refractive power of the eye, and thus, a fully functional lens is critical. We compared the optical properties of 9- and 26-week regenerated lenses in the red spotted newt, Notophthalmus viridescens, with the original lenses removed from the same eyes. At 9 weeks, the regenerated lenses are smaller than the original lenses and are histologically immature, with a lower density of lens proteins. The 9 week lenses have greater light transmission, but significantly reduced focal length and refractive index than the original lenses. This suggests that following 9 weeks of regeneration, the lenses have not recovered the functionality of the original lens. By 26 weeks, the transmission of light in the more mature lens is reduced, but the optical parameters of the lens have recovered enough to allow functional vision.  相似文献   

8.
Dorsal iris from the eyes of adult Notophthalmus viridescens was transplanted into the blastema of regenerating limbs, subcutaneously in the limb or shoulder region, into the dorsal fin of larval newts and into the hindbrain of larval Ambystoma maculatum. The iris implants into the blastema regenerated lens vesicles or lenses with fibers in 40–75% of the cases. Multiple lenses were found in a few instances. No lenses developed from iris implants into the dorsal fin. Twenty percent of subcutaneous implants of iris formed lenses or lens vesicles, but lens regeneration from implants into the brain occurred only rarely. Denervation of the limb at the time of iris transplantation into the blastema greatly reduced the number of lenses regenerated. Studies on nerve fiber distribution in dorsal fin, subcutaneous areas, and denervated and innervated regenerating limbs, using the Bodian method, showed a general correlation between density of nerve fibers in the implant site and the incidence of lens regeneration from iris implants into that site. These results provide some evidence for a trophic action of nerve fibers on lens regeneration from the iris.  相似文献   

9.
《Journal of lipid research》2017,58(12):2289-2298
This study addresses the question: why do rats get cataracts at 2 years, dogs at 8 years, and whales do not develop cataracts for 200 years? Whale lens lipid phase transitions were compared with the phase transitions of other species that were recalculated. The major phospholipids of the whale lens were sphingolipids, mostly dihydrosphingomyelins with an average molar cholesterol/phospholipid ratio of 10. There was a linear correlation between the percentage of lens sphingolipid and lens lipid hydrocarbon chain order until about 60% sphingolipid. The percentage of lens sphingolipid correlated with the lens lipid phase transition temperature. The lifespan of the bowhead whale was the longest of the species measured and the percentage of whale lens sphingolipid fit well in the correlation between the percentage of lens sphingolipid and lifespan for many species. In conclusion, bowhead whale lens membranes have a high sphingolipid content that confers resistance to oxidation, allowing these lenses to stay clear relatively longer than many other species. The strong correlation between sphingolipid and lifespan may form a basis for future studies, which are needed because correlations do not infer cause. One could hope that if human lenses could be made to have a lipid composition similar to whales, like the bowhead, humans would not develop age-related cataracts for over 100 years.  相似文献   

10.
The application of photon correlation spectroscopy on mammalian eye lenses in vivo is revisited. It is shown that the use of a short wavelength laser type and a logarithmic correlator improves the signal-to-noise ratio to such an extent that shorter measurement times are possible without impairing the information content of the correlation function. Experimental correlation functions obtained in vivo on a rabbit eye lens, are analyzed with several techniques. The histogram approach is most successful for the determination of the distribution function of relaxation processes in the correlation function and proposes four different populations of components in the lens. This result is comparable to that from in vitro measurements on highly concentrated solutions of alpha-crystallins and of fiber cell cytoplasm, the former proteins being the main scattering components both in vivo and in vitro in the eye lens system. Our results indicate that the application of photon correlation spectroscopy on eye lenses in vivo offers new perspectives to use this technique as a fast, noninvasive tool to study relaxation phenomena in normal and cataractous lenses. The sensitivity of the method allows it to be used as an important analytical technique in the study of prevention and treatment of cataract.  相似文献   

11.
R Peltz  K Pezzella 《In vitro》1976,12(9):605-614
Observations were made on the frog lens epithelium after culture of the entire lens or of capsular explants. General deviations from normal lens structure as well as specific changes in two media were studied. DNA synthesis and mitosis were induced in the central epithelial cells. Disruption of the orderly, single, epithelial layer that is characteristic of normal lenses was accompanied by the appearance of multilayered plaques of epithelial cells and invasion of vacuolated regions of the lens fibers by epithelial cells. Cells that are fibroblast-like in appearance were observed in regions of the capsule depleted of cells and at the free edges of epithelial sheets in cell culture. Epithelial cells were surrounded by capsule-like material even situated in the lens interior. Nuclie derived from central epithelial cells of lenses cultured in L-15 medium and medium 199 had served as donors in previous nuclear transfer experiments in this laboratory. In our current observation of L-15-cultured lenses, cells were sparsely distributed on the capsule and nuclei were abnormally shaped; in 199-cultured lenses, cells were more densely distributed and nuclei resembled those of normal lenses. Medium 199 without serum could better maintain normal lens structure than L-15 medium without serum. In addition, the percentage of epithelial explants demonstrating cellular outgrowth was greater in medium 199. The differences in cellular behavior were shown not to be the result of different sugars, pH, or the presence of CO2. The nuclear transfer results may reflect the structural changes in the epithelium after lens culture in the two media.  相似文献   

12.
Normal and needle-punctured lenses of Rana pipiens were examined with the electron microscope in order to characterize the sequence of ultrastructural changes that follow the injury over a 5-month period. Results were compared with those obtained previously in experimentally injured mouse and accidentally injured human lenses. The normal adult frog lens was found to have a morphology similar to that of mammalian lenses. As in the human, frog lens epithelial cells contained scattered microfilaments and were connected by desmosomes and gap junctions. They differed from mouse cells, which had been shown to lack desmosomes and to have microfilaments organized into dense bundles. These differences are postulated to be related to the degree of accommodative deformation of the lens displayed by these species. After injury, cellular debris and fibrin, accumulated in the wound, were phagocytized by extrinsic cells derived from the blood and ocular tissues. Leucocytes, pigmented cells and fibroblasts remained in the wound for eight weeks, along with epithelial cells which proliferated and migrated from the wound margins.Epithelial cells showed an increase in those organelles associated with protein synthesis and transport, and in microfilaments. In cataractous lenses, epithelial cells showed changes in matrix, and lens fibers became organized into smaller, denser compressed units. At five months, considerable healing had taken place, but localized opacities persisted in many frog lenses.  相似文献   

13.
A random-walk model of motility is used to predict the dynamics of fluctuations in the number of particles in a small observation volume. The results show that number fluctuations provide a measure of the mean swimming speed as well as the persistence length. Experimental light-scattering results are presented for three strains of Escherichia coli whose motion appears random-walk in nature. For the strain with th elongest persistence length, excellent agreement is found that theoretical predictions. For the more erratic strains, however, the shape of the measured scattered light intensity correlation functions indicates the presence of a contribution due to orientational fluctuations.  相似文献   

14.
The lens of 6-day-old normal mouse was implanted into the lentectomized eye of adult mouse to examine the effect of retina upon the growth of the implanted lens in vivo. The implanted lens grew normally and its transparency was kept for more than 5 months after implantation. The connection between the implanted lens and the ciliary part of the recipient iris was well established with the regeneration of zonular fibers from the recipient. In young lenses implanted reversely into adult eyes, the epithelial cells facing the retina elongated and a new epithelium was formed on the corneal side of the lens within 5 days. Young lenses implanted either in normal or reverse orientation into eyes from which the retina was previously removed did not grow. The cells of the original lens epithelium of these lenses were randomly accumulated beneath the posterior lens capsule, while the anterior portion of the implanted lenses became an epithelial structure without cell elongation. These results suggest that the growth of the implanted lens may be dependent on the retina of the adult eye.  相似文献   

15.
Lens proteins and lens gross morphology were examined during tadpole and adult development of the bullfrog, Rana catesbeiana. Significant increases in the lens physical parameters of diameter, wet weight, dry weight (94–97% protein), and percent water were observed to accompany both natural and thyroxine-induced metamorphosis. These increases in lens parameters were not accompanied by growth of tadpoles during metamorphic change. Lens proteins were isolated from whole lenses and also from specified layers within whole lenses by a new fractionation method. Electrophoretic examination of whole lenses showed that the lens proteins did not change rapidly, one for another, prior to or during metamorphosis. However, changes became apparent during post metamorphic development. These changes included an increase in the relative concentration and mobility of alpha crystallin, a decrease in the relative concentration of gamma crystallin and an increase in the relative concentration of beta crystallin. Examination of specified layers within tadpole and frog lenses demonstrated that changes in the patterns of lens protein synthesis and modification may occur during development. Rapid and reproducible methods for quantitating changes in lens gross morphology and lens proteins, and for fractionating both tadpole and frog lenses into a number of definable layers were devised in the course of this study.  相似文献   

16.
J Favor  W Pretsch 《Genetical research》1990,56(2-3):157-162
Linkage data relative to the markers tabby and glucose-6-phosphate dehydrogenase are presented to locate X-linked cataract (Xcat) in the distal portion of the mouse X-chromosome between jimpy and hypophosphatemia. The human X-linked cataract-dental syndrome, Nance-Horan Syndrome, also maps closely to human hypophosphatemia and would suggest homology between mouse Xcat and human Nance-Horan Syndrome genes. In hemizygous males and homozygous females penetrance is complete with only slight variation in the degree of expression. Phenotypic expression in Xcat heterozygous females ranges from totally clear to totally opaque lenses. The phenotypic expression between the two lenses of a heterozygous individual could also vary between totally clear and totally opaque lenses. However, a correlation in the degree of expression between the eyes of an individual was observed. A variegated pattern of lens opacity was evident in female heterozygotes. Based on these observations, the site of gene action for the Xcat locus is suggested to be endogenous to the lens cells and the precursor cell population of the lens is concluded to be small. The identification of an X-linked cataract locus is an important contribution to the estimate of the number of mutable loci resulting in cataract, an estimate required so that dominant cataract mutagenesis results may be expressed on a per locus basis. The Xcat mutation may be a useful marker for a distal region of the mouse X-chromosome which is relatively sparsely marked and the X-linked cataract mutation may be employed in gene expression and lens development studies.  相似文献   

17.
Using light and electron-microscopic immunolocalization techniques, and gel electrophoresis combined with immunoblotting, we have examined the expression of cytoskeletal proteins in normal human fetal, child and adult lenses, in human anterior capsular cataract and in bovine lens cells in vivo and in vitro. In this report, we focus our observations on the pattern of actin-isoform expression during normal and pathological situations in vivo and culture conditions. We have noted that cells of developing and mature human lenses as well as bovine lens cells in situ contain only beta- and gamma-actins. In contrast, alpha-smooth muscle (alpha-sm) actin, an isoform typical of smooth muscle differentiation, was demonstrated in bovine lens cells at different times of culture. Moreover, the multilayered cells observed in the subcapsular zone of human anterior capsular cataract were characterized by the presence of alpha-sm actin. Thus, extensive changes in actin-isoform expression take place in lens cells growing in culture and may also occur during cataractogenesis. The biological meaning of the appearance of a marker of myoid differentiation in the ectodermally derived lens-forming cells is discussed.  相似文献   

18.
Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65–75 years) were incubated with aggrelyte-2 (500 μM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%–30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC–MS/MS results showed Nε-acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.  相似文献   

19.
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Becaue the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.  相似文献   

20.
A number of proteins have been isolated from the human lens at different stages of development, from before birth to old age. These proteins have been characterized and compared with each other and with corresponding proteins from bovine lens. Many similarities were found between human and bovine crystallins, but alpha-crystallin isolated from old human lenses using DEAE-cellulose, unlike bovine alpha-crystallin similarly isolated, is not found as large soluble aggregates. The amide contents of various lens protein fractions were determined. No extensive changes were found during adult life, but there was evidence that significant deamidation of alpha-crystallin had occurred before birth and possibly during infancy. The results are related to the unique development and aging of the lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号