首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis is a highly coordinated or programmed cell suicide mechanism in eukaryotes. Histone modification is associated with nuclear events in apoptotic cells. Specifically H2B phosphorylation at serine 14 (Ser14) catalyzed by Mst1 kinase has been linked to chromatin condensation during apoptosis. We report that activation of MAPKs (ERK1/2, JNK1/2 and p38) together with Mst1 and caspase-3 is required for phosphorylation of H2B (Ser14) during ultraviolet B light (UVB)-induced apoptosis. UVB can trigger activation of MAPKs and induce H2B phosphorylation at Ser14 but not acetylation in a time-dependent manner. Inhibition of ERK1/2, JNK1/2 or p38 activity blocked H2B phosphorylation (Ser14). Furthermore, caspase-3 was activated by UVB to regulate Mst1 activity, which phosphorylates H2B at Ser14, leading to chromatin condensation. Full inhibition of caspase-3 activity reduced Mst1 activation and partially inhibited H2B phosphorylation (Ser14), but ERK1/2, JNK1/2 and p38 activities were not affected. Taken together, these data revealed that H2B phosphorylation is regulated by both MAPKs and caspase-3/Mst1 pathways during UVB-induced apoptosis.  相似文献   

2.
Histone H2B phosphorylation tightly correlates with chromatin condensation during apoptosis. The caspase-cleaved acinus (apoptotic chromatin condensation inducer in the nucleus) provokes chromatin condensation in the nucleus, but the molecular mechanism accounting for this effect remains elusive. Here, we report that the active acinus p17 fragment initiates H2B phosphorylation and chromatin condensation by activating protein kinase C delta isoform (PKC-delta). We show that p17 binds to both Mst1 and PKC-delta, which is upregulated by apoptotic stimuli, enhancing their kinase activities. Acinus mutant susceptible to degradation elicits stronger chromatin condensation and higher H2B phosphorylation than wild-type acinus. Dominant-negative PKC-delta but not Mst1 robustly blocks acinus-initiated H2B phosphorylation. Surprisingly, depletion of Mst1 triggers caspase-3 activation, provoking H2B phosphorylation through activating PKC-delta. Further, acinus-elicited H2B phosphorylation and chromatin condensation are abrogated in PKC-delta-deficient mouse embryonic fibroblast cells and siRNA-knocked down PC12 cells. Thus, PKC-delta but not Mst1 acts as a physiological downstream kinase of acinus in promoting H2B phosphorylation and chromatin condensation.  相似文献   

3.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.  相似文献   

4.
Chromatin alterations, induced by covalent histone modifications, mediate a wide range of DNA-templated processes, including apoptosis. Apoptotic chromatin condensation has been causally linked to the phosphorylation of histone H2B (serine 14 in human; serine 10 in yeast, H2BS10ph) in human and yeast cells. Here, we extend these studies by demonstrating a unidirectional, crosstalk pathway between H2BS10 phosphorylation and lysine 11 acetylation (H2BK11ac) in yeast. We demonstrate that the H2BK11 acetyl mark, which exists in growing yeast, is removed upon H(2)O(2) treatment but before H2BS10ph occurs, in a unidirectional fashion. H2B K11Q mutants are resistant to cell death elicited by H(2)O(2), while H2B K11R mutants that mimic deacetylation promote cell death. Our results suggest that Hos3 HDAC deacetylates H2BK11ac, which in turn mediates H2BS10ph by Ste20 kinase. Together, these studies underscore a concerted series of enzyme reactions governing histone modifications that promote a switch from cell proliferation to cell death.  相似文献   

5.
Hay BA  Guo M 《Developmental cell》2003,5(3):361-363
Four recent papers describe the characterization in Drosophila of Hippo, a serine/threonine kinase of the Sterile 20 (STE20) group, resembling Mst1 and Mst2. Hippo restricts cell growth and cell proliferation, promotes cell death, and interacts with the tumor suppressors Salvador and Warts. This, together with the ability of Mst2 to rescue hippo mutant phenotypes, argues that Mst/Hippo proteins are tumor suppressors.  相似文献   

6.
Global histone H1 phosphorylation correlates with cell cycle progression. However, the function of site-specific H1 variant phosphorylation remains unclear. Our mass spectrometry analysis revealed a novel N-terminal phosphorylation of the major H1 variant H1.4 at serine 35 (H1.4S35ph), which accumulates at mitosis immediately after H3 phosphorylation at serine 10. Protein kinase A (PKA) was found to be a kinase for H1.4S35. Importantly, Ser-35-phosphorylated H1.4 dissociates from mitotic chromatin. Moreover, H1.4S35A substitution mutant cannot efficiently rescue the mitotic defect following H1.4 depletion, and inhibition of PKA activity increases the mitotic chromatin compaction depending on H1.4. Our results not only indicate that PKA-mediated H1.4S35 phosphorylation dissociates H1.4 from mitotic chromatin but also suggest that this phosphorylation is necessary for specific mitotic functions.  相似文献   

7.
The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein.  相似文献   

8.
ste20基因突变抑制葡萄糖诱导的酿酒酵母细胞凋亡   总被引:1,自引:0,他引:1  
杜浛  梁颖 《遗传学报》2006,33(7):664-668
近年来,酿酒酵母的细胞调亡研究取得了很大进展。多种因素可以诱导其调亡,譬如过氧化氢(H2O2)、醋酸、高渗透压和高盐浓度等。葡萄糖是酿酒酵母生长所必须的重要营养物质之一。同时,在其他营养元素缺乏的条件下,只用葡萄糖培养将迅速的诱导酿酒酵母的细胞凋亡。Ste20是PAK(p21 activated kinase)家族的成员,它参与酿酒酵母的信息素应答、假菌丝生长和侵入生长等途径。有研究表明,ste20突变株能抵抗由信息素和过氧化物诱导的细胞调亡。我们发现STE20基因突变也能抑制葡萄糖诱导的凋亡,用葡萄糖处理时,与野生型相比,ste20突变株细胞能保持完整的细胞膜和细胞核结构。H2O2诱导酿酒酵母细胞凋亡时,需要Ste20激酶磷酸化组蛋白H2B第十号丝氨酸(S10)。因此,葡萄糖诱导的酿酒酵母细胞凋亡作用可能通过类似于过氧化氢诱导的酿酒酵母细胞凋亡的途径进行的。  相似文献   

9.
The nucleosome, composed of an octamer of highly conserved histone proteins and associated DNA, is the fundamental unit of eukaryotic chromatin. How arrays of nucleosomes are folded into higher-order structures, and how the dynamics of such compaction are regulated, are questions that remain largely unanswered. Our recent studies demonstrated that phosphorylation of histone H2B is necessary to induce cell death that exhibits phenotypic hallmarks of apoptosis including DNA fragmentation and chromatin condensation in yeast (serine 10)1 and in mammalian cells (serine 14).2 In this article, we extend these findings by uncovering a role for H2B phosphorylation at serine 10 (Ser10) in another biological event that is associated with dramatic alterations in higher-order chromatin structure, meiosis. Our data show strong staining, indicative of H2B (Ser10) phosphorylation, during the pachytene stage of yeast meiotic prophase. These data broaden the use of this phosphorylation mark in chromatin remodeling that closely correlates with chromatin compaction. How phosphorylation marks are translated into meaningful downstream events during processes as diverse as apoptosis and meiosis remains a challenge for future studies.  相似文献   

10.
11.
Combinatorial modifications of the core histones have the potential to fine-tune the epigenetic regulation of chromatin states. The Aurora B kinase is responsible for generating the double histone H3 modification tri-methylated K9/phosphorylated S10 (H3K9me3/S10ph), which has been implicated in chromosome condensation during mitosis. In this study, we have identified a novel role for Aurora B in epigenetic marking of silent chromatin during cell differentiation. We find that phosphorylation of H3 S10 by Aurora B generates high levels of the double H3K9me3/S10ph modification in differentiated postmitotic cells and also results in delocalisation of HP1beta away from heterochromatin in terminally differentiated plasma cells. Microarray analysis of the H3K9me3/S10ph modification shows a striking increase in the modification across repressed genes during differentiation of mesenchymal stem cells. Our results provide evidence that the Aurora B kinase has a role in marking silent chromatin independently of the cell cycle and suggest that targeting of Aurora B-mediated phosphorylation of H3 S10 to repressed genes could be a mechanism for epigenetic silencing of gene expression.  相似文献   

12.
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.  相似文献   

13.
Arsenite is known to be an environmental human carcinogen. However, the mechanism of action of this compound in skin carcinogenesis is not completely clear. Here, we provide evidence that arsenite can induce phosphorylation of histone H3 at serine 10 in a time- and dose-dependent manner in JB6 Cl 41 cells. Arsenite induces phosphorylation of Akt1 at serine 473 and increases Akt1 activity. A dominant-negative mutant of Akt1 inhibits the arsenite-induced phosphorylation of histone H3 at serine 10. Additionally, active Akt1 kinase strongly phosphorylates histone H3 at serine 10 in vitro. The arsenite-induced phosphorylation of histone H3 at serine 10 was almost completely blocked by a dominant-negative mutant of extracellular signal-regulated kinase 2 and the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD98059. N- or C-terminal mutant mitogen- and stress-activated protein kinase 1 or its inhibitor H89 had no effect on arsenite-induced phosphorylation of histone H3 at serine 10 in JB6 Cl 41 cells. However, cells deficient in p90 ribosomal S6 kinase 2 (Rsk2(-/-)) totally block this phosphorylation in a dose- and time-dependent manner. Taken together, these results suggested that arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2 and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1.  相似文献   

14.
15.
In eukaryotic cells, genomic DNA is organized into a chromatin structure, which not only serves as the template for DNA-based nuclear processes, but also as a platform integrating intracellular and extracellular signals. Although much effort has been spent to characterize chromatin modifying/remodeling activities, little is known about cell signaling pathways targeting these chromatin modulators. Here, we report that cyclin-dependent kinase 1 (CDK1) phosphorylates the histone H2A deubiquitinase Ubp-M at serine 552 (S552P), and, importantly, this phosphorylation is required for cell cycle progression. Mass spectrometry analysis confirmed Ubp-M is phosphorylated at serine 552, and in vitro and in vivo assays demonstrated that CDK1/cyclin B kinase is responsible for Ubp-M S552P. Interestingly, Ubp-M S552P is not required for Ubp-M tetramer formation, deubiquitination activity, substrate specificity, or regulation of gene expression. However, Ubp-M S552P is required for cell proliferation and cell cycle G2/M phase progression. Ubp-M S552P reduces Ubp-M interaction with nuclear export protein CRM1 and facilitates Ubp-M nuclear localization. Therefore, these studies confirm that Ubp-M is phosphorylated at S552 and identify CDK1 as the enzyme responsible for the phosphorylation. Importantly, this study specifically links Ubp-M S552P to cell cycle G2/M phase progression.  相似文献   

16.
Glucose is one of the most important nutrients for yeast growth, which induces cell death of S. cerevisiae in the absence of other nutrients to support growth. In the present study, we reported that the S. cerevisiae ste20 mutant was resistant to glucose-induced cell death. Cells of ste20 mutant that were treated with glucose maintained intact membrane and nuclei. Ste20 kinase phosphorylates histone H2B at serine 10 (S10) during hydrogen peroxide (H2O2)-induced cell death. Therefore, glucose-induced cell death (GICD) may be regulated via a similar pathway of H2O2-induced apoptosis.  相似文献   

17.
Post-translational modifications of histone proteins, the basic building blocks around which eukaryotic DNA is organized, are crucially involved in the regulation of genome activity as they control chromatin structure and dynamics. The recruitment of specific binding proteins that recognize and interact with particular histone modifications is thought to constitute a fundamental mechanism by which histone marks mediate biological function. For instance, tri-methylation of histone H3 lysine 9 (H3K9me3) is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Until now, little was known about the regulation of effector-histone mark interactions, and in particular, of the binding of HP1 to H3K9me3. Recently, we and others presented evidence that a "binary methylation-phosphorylation switch" mechanism controls the dynamic release of HP1 from H3K9me3 during the cell cycle: phosphorylation of histone H3 serine 10 (H3S10ph) occurs at the onset of mitosis, interferes with HP1-H3K9me3 interaction, and therefore, ejects HP1 from its binding site. Here, we discuss the biological function of HP1 release from chromatin during mitosis, consider implications why the cell controls HP1 binding by such a methylation-phosphorylation switching mechanism, and reflect on other cellular pathways where binary switching of HP1 might occur.  相似文献   

18.
Inflammation has been increasingly studied as part of the pathophysiology of neurodegenerative diseases. Mammalian Ste20-like kinase 1 (Mst1), a key factor of the Hippo pathway, is connected to cell death. Unfortunately, little study has been performed to detect the impact of Mst1 in neuroninflammation. The results indicated that Mst1 expression was upregulated because of LPS treatment. However, the loss of Mst1 sustained BV-2 cell viability and promoted cell survival in the presence of LPS treatment. Molecular investigation assay demonstrated that Mst1 deletion was followed by a drop in the levels of mitochondrial fission via repressing Drp1 expression. However, Drp1 adenovirus transfection reduced the protective impacts of Mst1 knockdown on mitochondrial stress and neuronal dysfunction. Finally, our results illuminated that Mst1 affected Drp1 content and mitochondrial fission in a JNK-dependent mechanism. Reactivation of the JNK axis inhibited Mst1 knockdown-mediated neuronal protection and mitochondrial homeostasis. Altogether, our results indicated that Mst1 upregulation and the activation of JNK-Drp1-mitochondrial fission pathway could be considered as the novel mechanism regulating the progression of neuroninflammation. This finding would pave a new road for the treatment of neurodegenerative diseases via modulating the Mst1-JNK-Drp1-mitochondrial fission axis.  相似文献   

19.
Histone H3 phosphorylation is related closely to chromatin remodeling and chromosome condensation. H3 phosphorylation at serine 28 is coupled with mitotic chromosome condensation in diverse mammalian cell lines. However, the pathway that mediates phosphorylation of H3 at serine 28 is unknown. In the present study, ERK1, ERK2, or p38 kinase strongly phosphorylated H3 at serine 28 in vitro. JNK1 or JNK2 was able also to phosphorylate H3 at serine 28 in vitro but to a lesser degree. UVB irradiation markedly induced phosphorylation of H3 at serine 28 in JB6 Cl 41 cells. PD 98059, a MEK1 inhibitor, and SB 202190, a p38 kinase inhibitor, efficiently repressed UVB-induced H3 phosphorylation at serine 28. Expression of dominant negative mutant (DNM) ERK2 in JB6 Cl 41 cells totally blocked UVB-induced phosphorylation of H3 at serine 28. Additionally, DNM p38 kinase or DNM JNK1 partially blocked UVB-induced H3 phosphorylation at serine 28. Furthermore, UVB-induced H3 phosphorylation at serine 28 was inhibited in Jnk1(-/-) cells but not in Jnk2(-/-) cells. These results suggest that UVB-induced H3 phosphorylation at serine 28 may be mediated by mitogen-activated protein kinases.  相似文献   

20.
Histone H3 is the core protein of the nucleosome. Phosphorylation of H3 involves immediate early gene expression, chromatin remodeling, and chromosome condensation during mitosis. Very recently, Rsk2 or MSK1 kinase-mediated phosphorylation of H3 at serine 10 was reported. In the present study, we show that both ERKs and p38 kinase may mediate ultraviolet B-induced phosphorylation of H3 at serine 10. PD 98059, a MEK1 inhibitor, and SB 202190, a p38 kinase inhibitor, efficiently inhibited ultraviolet B-induced phosphorylation of H3. Phosphorylation of H3 was also inhibited in cells expressing dominant negative mutant (DNM) ERK2 and DNM p38 kinase. In contrast, no inhibition of H3 phosphorylation in Jnk1 or Jnk2 knockout cells (Jnk1(-/-) or Jnk2(-/-)) and cells expressing DNM JNK1 was observed. More importantly, incubation of active ERK2 or p38 kinase with H3 protein resulted in phosphorylation of H3 at serine 10 in vitro. These results suggest that ERK and p38 kinase are at least two important mediators of phosphorylation of H3 at serine 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号