首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Hexaploid tritordeum is the amphiploid derived from the cross between Hordeum chilense and durum wheat. The storage proteins synthesised by the Hch genome have an influence on the gluten strength of this amphiploid. The D-prolamins of H. chilense are glutenin-like proteins. The variability has been analysed electrophoretically and up to 20 different patterns have been detected in a world collection of this species. This genetic variability of H. chilense could be a source of additional variation in tritordeum and in breeding wheat for quality. Received: 29 November 1998 / Accepted: 19 December 1998  相似文献   

2.
Hordeum chilense Roem. et Schult. is a native South American diploid wild barley included in the section Anisolepis Nevski. H. chilense occurs exclusively in Chile and Argentina and has been used in the synthesis of a new amphiploid named tritordeum (×Tritordeum Ascherson et Graebner). The HMW glutenin subunits of H. chilense have a great influence on gluten strength of tritordeum. The variability of these proteins has been analysed electrophoretically, and up to ten allelic variants have been detected in a world collection of this species. This genetic variability has been included in 121 lines of tritordeum and could be used for widening the genetic basis of tritordeum and wheat. Received: 22 March 2000 / Accepted: 14 April 2000  相似文献   

3.
Summary Polyacrylamide and starch gel electrophoresis of esterase (EST), glutamate oxaloacetate transaminase (GOT) and phosphoglucomutase (PGM) isozymes in Hordeum chilense, Triticum turgidum conv. durum, the amphiploid H. chilense X T. turgidum (Tritordeum), and the durum wheat/H. chilense monosomic addition lines revealed the chromosomal location of one EST locus, two GOT loci and one PGM locus. Loci Est-H ch1 and Got-H ch2 were found on chromosome 6Hch,Got-H ch3 on chromosome 3Hch, and Pgm-H ch1 on chromosome 4Hch. These results lend evidence for the assumed homoeology relationships between chromosomes of Triticeae species.  相似文献   

4.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

5.
Imidazolinone herbicides resistant varieties, induced by mutations at the AHAS gene (acetohydroxyacid synthase), have been developed in many crops. Hexaploid tritordeum (Tritordeum Asch. & Graebn.) is the amphiploid derived from the cross between Hordeum chilense (HchHch) and durum wheat Triticum turgidum L. (Thell) (AABB). Tritordeums have the potential to become a new crop with high added-value for food or feed. Mutagenesis with EMS was conducted to obtain imidazolinone resistant lines derived of the tritordeum HT621. Eleven M3 plants were selected after imidazolinone treatment and five descendants of two of these lines (HT621-M3R1-3 and HT621-M3R10-1) were analyzed at the molecular level. Partial sequences of the three homologous AHAS loci in genomes A, B, and Hch were obtained as well as those of HT621. A partial sequence of the AHAS gene in Hordeum chilense is first described in this work, and the designation ahasL-H ch 1 is proposed. A single Ser-Asn627 substitution at the AHAS locus in the B genome is responsible of resistance in both lines. We propose the name AhasL-B2 for this resistance allele. This is the first report of the selection of imidazolinone resistant lines of tritordeum and the molecular characterization of the mutation conferring this resistance.  相似文献   

6.
Summary A comparison of EST-5 grain esterase phenotypes from wheat-alien amphiploid, addition and substitution genotypes, resolved by flat-bed isoelectric focusing identified homoeologous Est-5 loci on chromosome 3H of Hordeum vulgare, 3Hch of H. chilense, 3Sb of Aegilops bicornis, 3S1 of Ae. sharonensis and Ae. longissima and 6R of Secale cereale and 6Rm of S. montanum. The Est-5 genes in alien species provide evidence for chromosome homoeology with wheat.  相似文献   

7.
Sodium proton antiporters are ubiquitous membrane proteins that catalyze the exchange of Na+ for protons throughout the biological world. The Escherichia coli NhaA is the archetypal Na+/H+ antiporter and is absolutely essential for survival in high salt concentrations under alkaline conditions. Its crystal structure, accompanied by extensive molecular dynamics simulations, have provided an atomically detailed model of its mechanism. In this study, we utilized a combination of computational methodologies in order to construct a structural model for the Na+/H+ antiporter from the gram-negative bacterium Vibrio parahaemolyticus. We explored its overall architecture by computational means and validated its stability and robustness. This protein belongs to a novel group of NhaA proteins that transports not only Na+ and Li+ as substrate ions, but K+ as well, and was also found to miss a β-hairpin segment prevalent in other homologs of the Bacteria domain. We propose, for the first time, a structure of a prototype model of a β-hairpin-less NhaA that is selective to K+. Better understanding of the Vibrio parahaemolyticus NhaA structure-function may assist in studies on ion transport, pH regulation and designing selective blockers.  相似文献   

8.
Summary The intergeneric amphiploid Hordeum chilense × Aegilops squarrosa has been synthesized. The amphiploid plants have the expected chromosome number of 28. The average meiotic chromosome pairing was 12.48 bivalents + 3.04 univalents. The morphology of the amphiploid resembles that of the Aegilops parent. Nucleoli from both H. chilense and A. squarrosa are expressed in the amphiploid. Neither chromosome instability nor homoeologous pairing was found. The amphiploid is fertile and vigorous.  相似文献   

9.
Summary The meiotic behaviour of the amphiploid Hordeum chilense X Triticum turgidum conv. durum using a C-banding staining method is studied. Nine pairs of chromosomes at metaphase-1 (4A, 7A and the seven of the B genome) were identified and the remaining wheat chromosomes (1A, 2A, 3A, 5A and 6A) and seven of the chilense (1 to 7 H ch chromosomes) were assigned to its particular genome. A similar mean number of univalents from parental genomes (wheat and wild barley) were found. No meiotic pairing between chilense and turgidum chromosomes was detected. Differences in the meiotic behaviour per chromosome and amongst genomes are explained on the basis of cytomorphological and heterochromatin characteristics.  相似文献   

10.
Two barley cultivars (Hordeum vulgare L., cvs. Elo and Belogorskii) differing in salt tolerance were used to study 22Na+ uptake, expression of three isoforms of the Na+/H+ antiporter HvNHX1-3, and the cellular localization of these isoforms in the elongation zone of seedling roots. During short (1 h) incubation, seedling roots of both cultivars accumulated approximately equal quantities of 22Na+. However, after 24-h incubation the content of 22Na+ in roots of a salt-tolerant variety Elo was 40% lower than in roots of the susceptible variety Belogorskii. The content of 22Na+ accumulated in shoots of cv. Elo after 24-h incubation was 6.5 times lower than in shoots of cv. Belogorskii and it was 4 times lower after the salt stress treatment. The cytochemical examination revealed that three proteins HvNHX1-3 are co-localized in the same cells of almost all root tissues; these proteins were present in the tonoplast and prevacuolar vesicles. Western blot analysis of HvNHX1-3 has shown that the content of isoforms in vacuolar membranes increased in response to salt stress in seedling roots and shoots of both cultivars, although the increase was more pronounced in the tolerant cultivar. The content of HvNHX1 in the seedlings increased in parallel with the enhanced expression of HvNHX1, whereas the increase in HvNHX2 and HvNHX3 protein content was accompanied by only slight changes in expression of respective genes. The results provide evidence that salt tolerance of barley depends on plant ability to restrict Na+ transport from the root to the shoot and relies on regulatory pathways of HvNHX1-3 expression in roots and shoots during salt stress.  相似文献   

11.
Na+/H+ antiporters are ubiquitous membrane proteins and play a central role in cell homeostasis including pH regulation, osmoregulation, and Na+/Li+ tolerance in bacteria. The microbial communities in extremely hypersaline soil are an important resource for isolating Na+/H+ antiporter genes. A metagenomic library containing 35,700 clones was constructed by using genomic DNA obtained from the hypersaline soil samples of Keke Salt Lake in Northwest of China. Two Na+/H+ antiporters, K1-NhaD, and K2-NhaD belonging to NhaD family, were screened and cloned from this metagenome by complementing the triple mutant Escherichia coli strain KNabc (nhaA , nhaB , chaA ) in medium containing 0.2 M NaCl. K1-NhaD and K2-NhaD have 75.5% identity at the predicted amino acid sequence. K1-NhaD has 78% identity with Na+/H+ antiporter NhaD from Halomonas elongate at the predicted amino acid sequence. The predicted K1-NhaD is a 53.5 kDa protein (487 amino acids) with 13 transmembrane helices. K2-NhaD has 73% identity with Alkalimonas amylolytica NhaD. The predicted K2-NhaD is a 55 kDa protein (495 amino acids) with 12 transmembrane helices. Both K1-NhaD and K2-NhaD could make the triple mutant E. coli KNabc (nhaA , nhaB , chaA) grow in the LBK medium containing 0.2–0.6 M Na+ or with 0.05–0.4 M Li+. Everted membrane vesicles prepared from E. coli KNabc cells carrying K1-NhaD or K2-NhaD exhibited Na+/H+ and Li+/H+ antiporter activities which were pH-dependent with the highest activity at pH 9.5. Little K+/H+ antiporter activity was also detected in vesicles form E. coli KNabc carrying K1-NhaD or K2-NhaD.  相似文献   

12.
Sodium concentrations as low as 2 mM exerted a significant protective effect on the high-pressure inactivation (160–210 MPa) of Rhodotorula rubra at pH 6.5, but not on two other yeasts tested (Shizosaccharomyces pombe and Saccharomyces cerevisiae). A piezoprotective effect of similar magnitude was observed with Li+ (2 and 10 mM), and at elevated pH (8.0–9.0), but no effect was seen with K+, Ca2+, Mg2+, Mn2+, or NH4 +. Intracellular Na+ levels in cells exposed to low concentrations of Na+ or to pH 8.0–9.0 provided evidence for the involvement of a plasma membrane Na+/H+ antiporter and a correlation between intracellular Na+ levels and pressure resistance. The results support the hypothesis that moderate high pressure causes indirect cell death in R. rubra by inducing cytosolic acidification.Communicated by K. Horikoshi  相似文献   

13.
We have identified a plasma membrane Na+/H+ exchanger from durum wheat, designated TdSOS1. Heterologous expression of TdSOS1 in a yeast strain lacking endogenous Na+ efflux proteins showed complementation of the Na+- and Li+-sensitive phenotype by a mechanism involving cation efflux. Salt tolerance conferred by TdSOS1 was maximal when co-expressed with the Arabidopsis protein kinase complex SOS2/SOS3. In vitro phosphorylation of TdSOS1 with a hyperactive form of the Arabidopsis SOS2 kinase (T/DSOS2∆308) showed the importance of two essential serine residues at the C-terminal hydrophilic tail (S1126, S1128). Mutation of these two serine residues to alanine decreased the phosphorylation of TdSOS1 by T/DSOS2∆308 and prevented the activation of TdSOS1. In addition, deletion of the C-terminal domain of TdSOS1 encompassing serine residues at position 1126 and 1128 generated a hyperactive form that had maximal sodium exclusion activity independent from the regulatory SOS2/SOS3 complex. These results are consistent with the presence of an auto-inhibitory domain at the C-terminus of TdSOS1 that mediates the activation of TdSOS1 by the protein kinase SOS2. Expression of TdSOS1 mRNA in young seedlings of the durum wheat variety Om Rabia3, using different abiotic stresses (ionic and oxidative stress) at different times of exposure, was monitored by RT–PCR.  相似文献   

14.
In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H+-and Ca2+-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory mechanisms of these pumps. In plant plasma membrane H+- and Ca2+-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed.  相似文献   

15.
Fukuda A  Nakamura A  Hara N  Toki S  Tanaka Y 《Planta》2011,233(1):175-188
We previously cloned a vacuolar Na+/H+ antiporter gene (OsNHX1) from rice (Oryza sativa). Here we identified four additional NHX-type antiporter genes in rice (OsNHX2 through OsNHX5) and performed molecular and functional analyses of those genes. The exon–intron structure of the OsNHX genes and the phylogenetic tree of the OsNHX proteins suggest that the OsNHX proteins are categorized into two subgroups (OsNHX1 through OsNHX4 and OsNHX5). OsNHX1, OsNHX2, OsNHX3, and OsNHX5 can suppress the Na+, Li+, and hygromycin sensitivity of yeast nhx1 mutants and their sensitivity to a high K+ concentration. The expression of OsNHX1, OsNHX2, OsNHX3, and OsNHX5 is regulated differently in rice tissues and is increased by salt stress, hyperosmotic stress, and ABA. When we studied the expression of β-glucuronidase (GUS) driven by either the OsNHX1 or the OsNHX5 promoter, we observed activity in the stele, the emerging part of lateral roots, the vascular bundle, the water pore, and the basal part of seedling shoots with both promoters. In addition, each promoter had a unique expression pattern. OsNHX1 promoter–GUS activity only was localized to the guard cells and trichome, whereas OsNHX5 promoter–GUS activity only was localized to the root tip and pollen grains. Our results suggest that the members of this gene family play important roles in the compartmentalization into vacuoles of the Na+ and K+ that accumulate in the cytoplasm and that the differential regulation of antiporter gene expression in different rice tissues may be an important factor determining salt tolerance in rice.  相似文献   

16.
According to sequences of several vacuolar Na+/H+ antiporter genes from Xinjiang halophytic plants, a new vacuolar Na+/H+ antiporter gene (HcNHX1) from the halophyte Halostachys caspica was obtained by RACE and RT-PCR using primers corresponding to conserved regions of the coding sequences. The obtained HcNHX1 cDNA was 1,983 bp and contained a 1,656 bp open reading frame encoding a deduced protein of 551 amino acid residues. The deduced amino acid sequence showed high identity with other NHX1 we have cloned previously from halophyte in Xinjiang desert area. The phylogenetic analysis showed that HcNHX1 formed a clade with NHX homologs of Chenopodiaceae. Expression profiles under salt treatment and ABA induction were investigated, and the results revealed that expression of HcNHX1 was induced by NaCl and ABA. To compare the degree of salt tolerance, we over-expressed HcNHX1 in Arabidopsis. Two transgenic lines grew more vigorously than the wild type (WT) under salt stress. The analysis of ion contents indicated that under salt stress, the transgenic plants compartmentalized more Na+ in the leaves compared with wild-type plants. Together, these results suggest that the products of the novel gene HcNHX1 from halophyte Halostachys caspica is a functional tonoplast Na+/H+ antiporter.  相似文献   

17.
The transport activity and substrate specificity of two chimeras consisting of S. cerevisiae Nha1p’s N-terminal regions (either first 125 or 184 AA) and the rest of the C. glabrata Cnh1p (up to the total protein length of 946 AA) were compared with those of the two native antiporters. Both chimeric transporters were functional upon expression in S. cerevisiae cells, their presence improved the ability of cells to grow in the presence of high external concentration of K+, Na+ or Rb+ (as chlorides), but not in the presence of the smallest cation (Li+). Cation efflux confirmed the ability of chimeras to export cations and showed their significantly reduced transport capacity compared to the wild-type proteins. Despite the very high level of primary sequence identity (87 %) between the S. cerevisiae and C. glabrata plasma-membrane Na+/H+ antiporters, various parts of these proteins are not exchangeable without affecting the antiporter’s transport capacity.  相似文献   

18.
The activity of Na+/H+ exchanger to remove toxic Na+ is important for growth of organisms under high salinity. In this study, the halotolerant cyanobacterium Aphanothece halophytica was shown to possess Na+/H+ exchange activity since exogenously added Na+ could dissipate a pre-formed pH gradient, and decrease extracellular pH. Kinetic analysis yielded apparent K m (Na+) and V max of 20.7 ± 3.1 mM and 3,333 ± 370 nmol H+ min−1 mg−1, respectively. For cells grown under salt-stress condition, the apparent K m (Na+) and V max was 18.3 ± 3.5 mM and 3,703 ± 350 nmol H+ min−1 mg−1, respectively. Three cations with decreasing efficiency namely Li+, Ca2+, and K+ were also able to dissipate pH gradient. Only marginal exchange activity was observed for Mg2+. The exchange activity was strongly inhibited by Na+-gradient dissipators, monensin, and sodium ionophore as well as by CCCP, a protonophore. A. halophytica showed high Na+/H+ exchange activity at neutral and alkaline pH up to pH 10. Cells grown at pH 7.6 under high salinity exhibited higher Na+/H+ exchange activity than those grown under low salinity during 15 days of growth suggesting a role of Na+/H+ exchanger for salt tolerance in A. halophytica. Cells grown at alkaline pH of 9.0 also exhibited a progressive increase of Na+/H+ exchange activity during 15 days of growth.  相似文献   

19.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

20.
Heavy water (H218O) has been used to label DNA of soil microorganisms in stable isotope probing experiments, yet no measurements have been reported for the 18O content of DNA from soil incubated with heavy water. Here we present the first measurements of atom% 18O for DNA extracted from soil incubated with the addition of H218O. Four experiments were conducted to test how the atom% 18O of DNA, extracted from Ponderosa Pine forest soil incubated with heavy water, was affected by the following variables: (1) time, (2) nutrients, (3) soil moisture, and (4) atom% 18O of added H2O. In the time series experiment, the atom% 18O of DNA increased linearly (R 2 = 0.994, p < 0.01) over the first 72 h of incubation. In the nutrient addition experiment, there was a positive correlation (R 2 = 0.991, p = 0.006) between the log10 of the amount of tryptic soy broth, a complex nutrient broth, added to soil and the log10 of the atom% 18O of DNA. For the experiment where soil moisture was manipulated, the atom% 18O of DNA increased with higher soil moisture until soil moisture reached 30%, above which 18O enrichment of DNA declined as soils became more saturated. When the atom% 18O for H2O added was varied, there was a positive linear relationship between the atom% 18O of the added water and the atom% 18O of the DNA. Results indicate that quantification of 18O incorporated into DNA from H218O has potential to be used as a proxy for microbial growth in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号