首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.  相似文献   

2.
3.
Khoo D  Perez C  Mohr I 《Journal of virology》2002,76(23):11971-11981
The herpes simplex virus Us11 gene product inhibits activation of the cellular PKR kinase and associates with a limited number of unrelated viral and cellular RNA molecules via a carboxyl-terminal 68-amino-acid segment rich in arginine and proline. To characterize the determinants underlying the recognition of an RNA target by Us11, we employed an in vitro selection technique to isolate RNA ligands that bind Us11 with high affinity from a population of molecules containing an internal randomized segment. Binding of Us11 to these RNA ligands is specific and appears to occur preferentially on conformational isoforms that possess a higher-order structure. While the addition of unlabeled poly(I. C) reduced binding of Us11 to a selected radiolabeled RNA, single-stranded homopolymers were not effective competitors. Us11 directly associates with poly(I. C), and inclusion of an unlabeled selected RNA in the reaction reduces poly(I. C) binding, while single-stranded RNA homopolymers have no effect. Finally, Us11 binds to defined, double-stranded RNA (dsRNA) molecules that exhibit greater sequence complexity. Binding to these dsRNA perfect duplexes displays a striking dependence on length, as 39-bp or shorter duplexes do not bind efficiently. Furthermore, this interaction is specific for dsRNA as opposed to dsDNA, implying that the Us11 RNA binding domain can distinguish nucleic acid duplexes containing 2' hydroxyl groups from those that do not. These results establish that Us11 is a dsRNA binding protein. The arginine- and proline-rich Us11 RNA binding domain is unrelated to known dsRNA binding elements and thus constitutes a unique recognition motif that interacts with dsRNA. The ability of Us11 to bind dsRNA may be important for inhibiting activation of the cellular PKR kinase in response to dsRNA.  相似文献   

4.
Interferon (IFN)-inducible, double-stranded (dsRNA)-activated protein kinase (PKR) is a key mediator of the antiviral and antiproliferative effects of IFN. PKR is present within cells in a latent state. In response to binding dsRNA, the enzyme becomes activated, causing autophosphorylation and an increase in specific kinase activity. In order to study PKR and its inhibitors, a large amount of the enzyme in its latent, unphosphorylated state is required. When PKR is fused to glutathione S-transferase (GST-PKR) and the fusion protein is expressed in Escherichia coli, the PKR obtained is fully activated by autophosphorylation. Therefore, we have developed an expression plasmid in which both GST-PKR and bacteriophage lambda protein phosphatase (lambda-PPase) genes were placed downstream of a T7 promoter. After induction of expression, unphosphorylated GST-PKR was obtained in good yield, and purified to near homogeneity. The purified enzyme has dsRNA-dependent activation and phosphorylates the translation initiation factor eIF2 alpha. Using the recombinant protein, we analyzed the inhibition mechanisms of two viral inhibitors, vaccinia virus K3L protein and adenovirus virus-associated RNA I (VAI RNA). K3L inhibited both autophosphorylation of PKR and phosphorylation of eIF2 alpha, whereas VAI RNA inhibited only autophosphorylation. The separation of autophosphorylation and catalytic activity shows that the recombinant PKR is useful in analyzing the functions of PKR, its inhibitors, and its regulatory molecules. The coexpression system of protein kinase with lambda-PPase described here will be applicable to obtaining unphosphorylated and unactivated forms of other protein kinases.  相似文献   

5.
Autophosphorylation of the protein kinase dependent on double-stranded RNA   总被引:45,自引:0,他引:45  
The double-stranded RNA (dsRNA)-dependent protein kinase (p68 kinase) from interferon-treated human cell is a Mr 68,000 protein induced by interferon. By the use of a specific monoclonal antibody, we have been able to study the two distinct protein kinase activities characteristic of purified p68 kinase. The first activity is functional for endogenous phosphorylation of the enzyme (p68 kinase), whereas the second one is responsible for the phosphorylation of exogenous substrates such as eukaryotic initiation factor 2 and histone. When activated by dsRNA in the presence of Mn2+ and ATP, p68 kinase is autophosphorylated and is then capable of catalyzing phosphorylation of histone in the absence of dsRNA. Whereas binding of 8-azido-[alpha-32P] ATP (8-N3ATP) to p68 kinase is dependent on both dsRNA and Mn2+, phosphorylated p68 kinase binds 8-N3ATP independent of dsRNA. This is consistent with a dsRNA requirement for the autophosphorylation of p68 kinase, but not for the phosphorylation of exogenous substrates. p68 kinase is mainly associated with the ribosomal pellet. It could be recovered efficiently by a buffer containing both high salt and a nonionic detergent. Synthesis of p68 kinase is induced several-fold by interferon in different types of human cells. Partial proteolysis of [35S]methionine and an 8-N3ATP-labeled p68 kinase preparation by Staphylococcus aureus V8 protease indicated the presence of a major Mr 48,000 polypeptide (p48) with a specific ATP-binding site. p48 probably contains the catalytic unit of p68 kinase and is analogous to a similar protein which we have previously described as a distinct protein present in a complexed form with p68 kinase. We now believe that the presence of p48 in previously purified kinase preparations was due to partial degradation of p68 kinase.  相似文献   

6.
The genome of the human delta hepatitis agent is a circular, highly structured single-stranded RNA lacking regular runs of RNA-RNA duplex longer than 15 bp. We have tested the ability of delta agent RNA to participate in reactions with a protein containing a motif which confers the ability to bind double-stranded RNA (dsRNA). Surprisingly, highly purified delta agent RNA preparations from which all traces of contaminating dsRNA have been removed activate PKR, the dsRNA-dependent protein kinase activity of mammalian cells (also known as DAI, P1-eIF-2, and p68 kinase). This behavior is in marked contrast to the interaction of PKR with a number of other highly structured viral single-stranded RNAs, which inhibit, rather than stimulate, activation of this kinase. PKR activation leads to inhibition of protein synthesis in the rabbit reticulocyte lysate system. Paradoxically, delta RNA failed to elicit the expected PKR-mediated inhibition of cell-free translation. Instead, delta RNA interfered with PKR activation and the translational block induced by dsRNA. We conclude that the interaction of PKR and delta agent RNA may represent a new category of protein-RNA interactions involving the dsRNA binding motif.  相似文献   

7.
The interferon-inducible protein kinase PKR interacts with a number of small viral RNA species, including adenovirus VAI RNA and the Epstein-Barr virus-encoded RNA EBER-1. These RNAs bind to PKR and protect protein synthesis from inhibition by double-stranded RNA in the reticulocyte lysate system. Using a peptide phosphorylation assay we show here that EBER-1, like VAI, directly inhibits the activation of purified PKR. A second Epstein-Barr virus RNA, EBER-2, also regulates PKR. EBER-1, EBER-2 and VAI RNA exhibit mutually competitive binding to the native or recombinant enzyme, as assessed by U.V. crosslinking experiments and filter binding assays. The affinities of all three RNAs for PKR in vitro are similar (Kd = ca. 0.3 nM). Since this protein kinase has been proposed to exert a tumour suppressor function in vivo, the ability of EBER-1 to inhibit its activation suggests a role for this small RNA in cell transformation by Epstein-Barr virus.  相似文献   

8.
Type I interferons (IFN-alpha/beta) play an essential role in both innate and adaptive antiviral immune responses. IFN- beta is produced by fibroblasts and myeloid dendritic cells (DCs) upon viral infection or in response to doublestranded RNA (dsRNA). Several intracellular molecules having a dsRNA-binding motif such as dsRNA-dependent protein kinase recognize dsRNA in a sequence-independent manner and induce antiviral innate responses. Toll-like receptor (TLR) 3, a member of TLR family proteins, recognizes extracellular dsRNA and activates NF- kappaB and the IFN-beta promoter leading to the induction of IFN-beta production. Here we analyzed the dsRNA structure capable of inducing TLR3-mediated IFN-beta production using various synthetic RNA duplexes. In contrast to the recognition of dsRNA by intracellular molecules, TLR3 preferentially recognizes polyriboinocinic:polyribocytidylic acid (poly(I:C)) rather than synthetic virus-derived dsRNAs. 2'-O-methyl or 2'-fluoro modification of cytidylic acid abolished the IFN-beta-inducing ability of the poly(I:C) duplex, and these modified dsRNAs inhibited poly(I:C)-induced TLR3-mediated IFN-beta production by fibroblasts and DCs. In addition, poly(dI:dC), a non-IFN inducer, also blocked poly(I:C)-induced IFN-beta induction. Since TLR3 is localized in the intracellular compartment of DCs where signaling occurs, modified dsRNAs may compete with poly(I:C) for binding to the cell-surface receptor that transfers dsRNA into TLR3-enriched vesicles. Thus, TLR3 recognizes a unique dsRNA structure that largely differs from those recognized by other dsRNA-binding proteins.  相似文献   

9.
The interferon-induced protein kinase DAI, the double-stranded RNA (dsRNA)-activated inhibitor of translation, plays a key role in regulating protein synthesis in higher cells. Once activated, in a process that involves autophosphorylation, it phosphorylates the initiation factor eIF-2, leading to inhibition of polypeptide chain initiation. The activity of DAI is controlled by RNA regulators, including dsRNA activators and highly structured single-stranded RNAs which block activation by dsRNA. To elucidate the mechanism of activation, we studied the interaction of DAI with RNA duplexes of discrete sizes. Molecules shorter than 30 bp fail to bind stably and do not activate the enzyme, but at high concentrations they prevent activation by long dsRNA. Molecules longer than 30 bp bind and activate the enzyme, with an efficiency that increases with increasing chain length, reaching a maximum at about 85 bp. These dsRNAs fail to activate at high concentrations and also prevent activation by long dsRNA. Analysis of complexes between dsRNA and DAI suggests that at maximal packing the enzyme interacts with as little as a single helical turn of dsRNA (11 bp) but under conditions that allow activation the binding site protects about 80 bp of duplex. When the RNA-binding site is fully occupied with an RNA activator, the complex appears to undergo a conformational change.  相似文献   

10.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

11.
We previously reported ATPase, RNA unwinding, and RNA-binding activities of recombinant p68 RNA helicase that was expressed in Escherichia coli. Huang et al. The recombinant protein bound both single-stranded (ss) and double-stranded (ds) RNAs. To further characterize the substrate RNA binding by p68 RNA helicase, we expressed and purified the recombinant N-terminal and C-terminal domains of the protein. RNA-binding property and protein phosphorylation of the recombinant domains of p68 were analyzed. Our data demonstrated that the C-terminal domain of p68 RNA helicase bound ssRNA. More interestingly, the C-terminal domain was a target of protein kinase C (PKC). Phosphorylation of the C-terminal domain of p68 abolished its RNA binding. Based on our observations, we propose that the C-terminal domain is an RNA substrate binding site for p68. The protein phosphorylation by PKC regulates the RNA binding of p68 RNA helicase, which consequently controls the enzymatic activities of the protein.  相似文献   

12.
The double-stranded RNA (dsRNA)-activated protein kinase [protein kinase R (PKR)] plays a major role in the innate immune response in humans. PKR binds dsRNA non-sequence specifically and requires a minimum of 15-bp dsRNA for one protein to bind and 30-bp dsRNA to induce protein dimerization and activation by autophosphorylation. PKR phosphorylates eukaryotic initiation factor 2α, a translation initiation factor, resulting in the inhibition of protein synthesis. We investigated the mechanism of PKR activation by an RNA hairpin with a number of base pairs intermediate between these 15- to 30-bp limits: human immunodeficiency virus type 1 transactivation-responsive region (TAR) RNA, a 23-bp hairpin with three bulges that is known to dimerize. TAR monomers and dimers were isolated from native gels and assayed for RNA and protein dimerization to test whether RNA dimerization affects PKR dimerization and activation. To modulate the extent of dimerization, we included TAR mutants with different secondary features. Native gel mixing experiments and analytical ultracentrifugation indicate that TAR monomers bind one PKR monomer and that TAR dimers bind two or three PKRs, demonstrating that RNA dimerization drives the binding of multiple PKR molecules. Consistent with functional dimerization of PKR, TAR dimers activated PKR while TAR monomers did not, and RNA dimers with fewer asymmetrical secondary-structure defects, as determined by enzymatic structure mapping, were more potent activators. Thus, the secondary-structure defects in the TAR RNA stem function as antideterminants to PKR binding and activation. Our studies support that dimerization of a 15- to 30-bp hairpin RNA, which effectively doubles its length, is a key step in driving activation of PKR and provide a model for how RNA folding can be related to human disease.  相似文献   

13.
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells. The spectrum of RNAs that interact with the La antigen includes species which also bind to the interferon-inducible protein kinase PKR. We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA. Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein. Furthermore, when recombinant La is incubated with a 900 bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms. We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.  相似文献   

14.
15.
Summary High molecular weight, fully double-stranded RNA (dsRNA) has been recognized as the genetic material of many plant, animal, fungal, and bacterial viruses (Diplomaviruses); virus-specific dsRNA is also found in cells infected with single-stranded RNA viruses.DsRNA has been identified in a variety of apparently normal eucaryotic cells and is associated with the killer character of certain strains of Saccaromyces cerevisiae.The properties and significance of these various dsRNA species are described and discussed, as well as the available information concerning the biosynthesis of such RNA in virus-infected cells, its degradation by a variety of enzymes, and some problems concerning the variables which may control this process.Finally, the biological functions of dsRNA are briefly considered, as well as the structural properties important for its activity as an inducer of interferon and an inhibitor of protein synthesis.Abbreviations dsRNA for double-stranded RNA - ssRNA for single-stranded RNA - SSC for 0.15 m sodium chloride, 0.015 m sodium citrate, pH 7 - Poly(A), poly(C), poly(U) for polyadenylate, polycytidylate and polyuridylate, respectively - Poly(A).poly(U), poly(G).poly(C), poly(I).poly(C) for double-stranded complexes formed between polyadenylate and polyuridylate, polyguanylate and polycytidylate, and polyinosinate and polycytidylate, respectively. - Poly(rA).poly(dT) for the complex formed between polyriboadenylate and polydeoxyribothymidylate - Poly(A-U), poly(G-C) for the alternating copolymers containing AMP and UMP, or GMP and CMP, respectively - Poly(rA).poly(dUz) for the complex formed between polyadenylate and poly 2-azido-2deoxyuridylate - (I)n.(br5C)n for the complex formed between polyinosinate and poly 5-bromocytidylate - (I)n.(s2C)n for the complex formed between polyinosinate and poly 2-thiocytidylate - (dIn3)n.(C)n for the complex formed between poly 2-azido-2-deoxyinosinate and polycytidylate - MW for molecular weight  相似文献   

16.
Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway for defense against viral infection. PKR is activated to undergo autophosphorylation upon binding to RNAs that contain duplex regions. Activated PKR phosphorylates the α-subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis in virus-infected cells. Viruses have evolved diverse PKR-inhibitory strategies to evade the antiviral response. Adenovirus encodes virus-associated RNA I (VAI), a highly structured RNA inhibitor that binds PKR but fails to activate. We have characterized the stoichiometry and affinity of PKR binding to define the mechanism of PKR inhibition by VAI. Sedimentation velocity and isothermal titration calorimetry measurements indicate that PKR interactions with VAI are modulated by Mg2+. Two PKR monomers bind in the absence of Mg2+, but a single monomer binds in the presence of divalent ion. Known RNA activators of PKR are capable of binding multiple PKR monomers to allow the kinase domains to come into close proximity and thus enhance dimerization. We propose that VAI acts as an inhibitor of PKR because it binds and sequesters a single PKR in the presence of divalent cation.  相似文献   

17.
Protein kinase PKR is activated by double-stranded RNA (dsRNA) and phosphorylates translation initiation factor 2alpha to inhibit protein synthesis in virus-infected mammalian cells. PKR contains two dsRNA binding motifs (DRBMs I and II) required for activation by dsRNA. There is strong evidence that PKR activation requires dimerization, but the role of dsRNA in dimer formation is controversial. By making alanine substitutions predicted to remove increasing numbers of side chain contacts between the DRBMs and dsRNA, we found that dimerization of full-length PKR in yeast was impaired by the minimal combinations of mutations required to impair dsRNA binding in vitro. Mutation of Ala-67 to Glu in DRBM-I, reported to abolish dimerization without affecting dsRNA binding, destroyed both activities in our assays. By contrast, deletion of a second dimerization region that overlaps the kinase domain had no effect on PKR dimerization in yeast. Human PKR contains at least 15 autophosphorylation sites, but only Thr-446 and Thr-451 in the activation loop were found here to be critical for kinase activity in yeast. Using an antibody specific for phosphorylated Thr-451, we showed that Thr-451 phosphorylation is stimulated by dsRNA binding. Our results provide strong evidence that dsRNA binding is required for dimerization of full-length PKR molecules in vivo, leading to autophosphorylation in the activation loop and stimulation of the eIF2alpha kinase function of PKR.  相似文献   

18.
19.
The interferon induced double-stranded-RNA-dependent eIF-2 alpha kinase has an established role in mediating part of interferons anti-viral effects. Several studies have suggested that it may have additional functions in cells not infected with virus. The mechanism of activation of the kinase and the consequences of its activity in uninfected cells remain to be determined. Our previous results have indicated that the activation (phosphorylation) of this kinase may be an important regulatory signal to the arrest of growth of mouse 3T3-F442A fibroblasts and their subsequent differentiation to adipocytes. We have found that the phosphorylation of the kinase occurred in vivo in the absence of viral infection and in vitro without the addition of dsRNA. We demonstrate here that total cytoplasmic RNA from 3T3-F442A cells contains a regulatory RNA(s) capable of activating dsRNA-dependent eIF-2 alpha kinase. Fractionation of the cytoplasmic RNA by oligo(dT)-cellulose indicated that the regulatory RNA eluted with the poly(A)-rich RNA fraction. It bound tightly to the dsRNA-dependent eIF-2 alpha kinase and was immune-precipitated with its antibodies as a complex of regulatory RNA and dsRNA-dependent eIF-2 alpha kinase. The regulatory RNA activity was further purified by phenol extraction of immune precipitates containing this complex. These findings indicated that the regulatory RNA forms a specific complex with the dsRNA-dependent eIF-2 alpha kinase. The activity of the regulatory RNA was sensitive to the dsRNA-specific RNase VI but not to proteinase K, DNase I or ssRNA-specific RNase T1. The activation of the dsRNA-dependent eIF-2 alpha kinase by regulatory RNA was prevented by addition of a high concentration of poly(I).poly(C). The regulatory RNA was also shown to activate partially purified dsRNA-dependent eIF-2 alpha kinase prepared from rabbit reticulocyte lysates and to inhibit protein synthesis in reticulocyte lysates. Our findings, that cellular RNAs can specifically activate the dsRNA-dependent eIF-2 alpha kinase, are consistent with a physiological role for the dsRNA-dependent eIF-2 alpha kinase and interferon during cell growth and differentiation. The relationship of the regulatory RNA activity to growth and differentiation of 3T3-F442A cells is discussed.  相似文献   

20.
Double-stranded RNA (dsRNA) inhibits protein synthesis in rabbit reticulocyte lysates by activating the synthesis of the endonuclease effector pppA2' p5' A2' p5' A(2-5A) and a protein kinase which phosphorylates the protein synthesis initiation factor eIF-2. Under certain assay conditions, high concentrations of dsRNA are without inhibitory effect in many lysates (high dsRNA "reversible" lysates). In these lysates natural dsRNA at low concentrations stimulated protein kinase activity to a greater extent than did the synthetic dsRNA poly rI.rC. Synthesis of 2--5A was greater when poly rI.rC was used. However, a number of factors, including the salt concentration and messenger RNA used, combine to determine the overall effect of dsRNA on protein synthesis under any given set of experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号