首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme GDPmannose: dolichyl monophosphate mannosyltransferase has been solubilized and purified from mice liver mitochondrial outer membranes. The purification combines detergent extraction of purified outer membranes using Nonidet P-40, with subsequent ion-exchange chromatography on DEAE-cellulose. At this stage, a 400-fold purification is obtained. The partially purified mannosyltransferase is activated choline-containing lipids such as phosphatidylcholine, lysophatidylcholine and sphingomyelin. The reaction is dependent upon the addition of exogenous dolichyl monophosphate. The sole reaction product has been identified as dolichyl posphate-mannose. The partially purified mannosyltrasnferase exhibits a Km of 1.33 μM for GDPmannose. Enzyme activity, eluted from DEAE-cellulose, could be further purified after incorporation into sphingomyelin vesicles containing dolichyl monophosphate followed by a sucrose density gradient certrifugation. The mannosyltransferase activity is completely associated with the liposomes at the top of the gradient. Significant stabilization and purification (approx. 1600-fold) of enzyme activity associated with these liposomes is obtained. Furthermore, the reconstitution of this purified enzyme within specific liposomes provides a good model membrane to investigate the molecular requirement of this mitochondrial mannosyltransferase.  相似文献   

2.
1. The removal of phospholipids completely abolished the activity of the enzyme UDP-glucose:ceramide glucosyltransferase from Golgi membranes. 2. Modulation of enzyme activity by phospholipids was undertaken on the solubilized form of the enzyme. 3. Well-defined fatty acyl chains and polar head groups were necessary for maximal stimulation by phospholipids. 4. A specific requirement for phosphatidylcholine is suggested by preliminary experiments of reconstitution of enzyme activity with phosphatidylcholine vesicles.  相似文献   

3.
It is known that phospholipids represent a minor component of chromatin. It has been highlighted recently that these lipids are metabolized directly inside the nucleus, thanks to the presence of enzymes related to their metabolism, such as neutral sphingomyelinase, sphingomyelin synthase, reverse sphingomyelin synthase and phosphatidylcholine-specific phospholipase C. The chromatin enzymatic activities change during cell proliferation, differentiation and/or apoptosis, independently from the enzyme activities present in nuclear membrane, microsomes or cell membranes. This present study aimed to investigate crosstalk in lipid metabolism in nuclear membrane and chromatin isolated from rat liver in vitro and in vivo. The effect of neutral sphingomyelinase activity on phosphatidylcholine-specific phospholipase C and sphingomyelin synthase, which enrich the intranuclear diacylglycerol pool, and the effect of phosphatidylcholine-specific phospholipase C activity on neutral sphingomyelinase and reverse sphingomyelin synthase, which enrich the intranuclear ceramide pool, was investigated. The results show that in chromatin, there exists a phosphatidylcholine/sphingomyelin metabolism crosstalk which regulates the intranuclear ceramide/diacylglycerol pool. The enzyme activities were inhibited by D609, which demonstrated the specificity of this crosstalk. Chromatin lipid metabolism is activated in vivo during cell proliferation, indicating that it could play a role in cell function. The possible mechanism of crosstalk is discussed here, with consideration to recent advances in the field.  相似文献   

4.
The intracellular location of sphingomyelin formation via the cholinephosphotransferase reaction from both endogenous an exogenous phosphatidylcholine and ceramide substrates has been studied in the subcellular membrane fractions prepared from mouse fibroblasts. The enzyme was found to be located in both the plasma membrane and the Golgi fractions. Activity in the Golgi fraction was stimulated to a greater extent by the addition of exogenous ceramide than was the activity in the plasma membrane fraction. It is concluded that endogenous phosphatidylcholine is available to the cholinephosphotransferase at saturating concentration and, therefore, is not rate-limiting. In contrast, the very low concentration of endogenous ceramide seems to limit the reaction rate, necessitating supplementation with exogenous material Both endogenous substrates are shown to be utilized in an intramembranous rather than an intermembranous reaction. The capacity of the plasma membrane fraction to synthesize sphingomyelin from endogenous phosphatidylcholine and ceramide was found to be sufficiently high to account for the rate of net synthesis of plasma membrane-bound sphingomyelin observed in the logarithmically multiplying cell culture. In contrast, the Golgi fraction displayed only 26% of the expected capacity, but it was stimulated 6-fold by the addition of exogenous ceramide. These results demonstrate that the total cellular sphingomyelin of the mouse fibroblasts can be provided via the cholinephosphotransferase pathways and that the plasma membrane and the Golgi fraction are most probably the intracellular sites of sphingomyelin biosynthesis.  相似文献   

5.
The effects of phospholipids on the properties of hepatic 5'-nucleotidase   总被引:1,自引:0,他引:1  
Arrhenius plots of 5'-nucleotidase activity in microsomes or plasma membranes from rat liver exhibited transitions at approximately 35 degrees C. The enzyme was purified from homogenates after solubilization in 2% Triton X-100 and 1% sodium deoxycholate. After the initial steps of the purification, the enzyme was recovered in membranes, as judged by both thin section and freeze-fracture electron microscopy, which contained sphingomyelin, phosphatidylcholine, and phosphatidylethanolamine. The purest fractions of 5'-nucleotidase were enriched approximate 3,000-fold, consisted of similar membranes, but only contained sphingomyelin. Thermal transitions were detected in Arrhenius plots of 5'-nucleotidase after detergent solubilization, in the membranes which contained the three phospholipids, but not in the purified fraction which contained only sphingomyelin; transitions were also detected after reassociation of the purified enzyme with microsomal or plasma membrane lipids and phosphatidylcholine but not with phosphatidylethanolamine. Phosphatidylcholines containing specific fatty acids all affected the energy of activation of 5'-nucleotidase, and the detergent Sarkosyl, which has been shown to dissociate phospholipids from 5'-nucleotidase (Evans, W. H., and Gurd, J. W. (1973) Biochem. J. 133, 189-199), caused a marked decrease in the stability of the enzyme to heating. Inhibition of 5'-nucleotidase by concanavalin A followed by reactivation with alpha-methyl-D-mannoside resulted in linear Arrhenius plots of 5'-nucleotidase activity in membrane fractions, and in lower transition temperatures for the detergent, solubilized enzyme. It is concluded that in situ, 5'-nucleotidase interacts with both sphingomyelin and phosphatidylcholine; the first apparently influences the stability of the enzyme and the second, the energy of activation. In addition, the lipid environment of the enzyme seems to be altered as a result of lectin binding.  相似文献   

6.
Microsomal calmodulin-stimulated ATPase (CaM-ATPase) was purifiedfrom dark-grown maize shoots by affinity chromatography andfunctionally reconstituted into phosphatidylcholine vesiclesby detergent dialysis. The resultant proteoliposomes showedCaM-stimulated ATP hydrolysis and CaM-stimulated ATP-dependentcalcium uptake, indicating that the CaM-ATPase is a calciumpump. Microsomal membranes prepared from dark-grown maize shootswere fractionated in continuous sucrose gradients. Calcium transportwas observed in plasma membrane and intracellular membrane fractions,but the bulk of the calmodulin-stimulated activity was foundto be associated with intracellular membranes. Five monoclonalantibodies were raised to affinity purified CaM-ATPase. Immunocytochemicaldata from roots suggested that the CaM-ATPase might be associatedwith membranes involved in the function of the mitotic apparatusin meristematic tissue. Key words: Zea mays L, calmodulin-stimulated calcium pump, functional reconstitution, mitosis, monoclonal antibody  相似文献   

7.
Cholinephosphotransferase (CDPcholine: 1,2-diacylglycerol cholinephosphotransferase, EC 2.7.8.2), which catalyzes the terminal step in phosphatidylcholine synthesis via the CDPcholine pathway, is present in sarcoplasmic reticulum from rabbit skeletal muscle (Cornell, R. and MacLennan, D.H. (1985) Biochim. Biophys. Acta 835, 567-576). The conditions for solubilization and reconstitution of this enzyme were investigated as a preliminary step towards its eventual purification. The activity was not released by treatment of membranes with 1 M KCl, but was solubilized after dissolution of membranes with detergents. Cholinephosphotransferase was inactivated by cholate, deoxycholate, Triton X-100, octylglucoside, Tween-20 or SDS at concentrations which solubilize the membrane. However, the activity could be fully recovered after reconstituting the membrane by adding excess lipid (soybean) and removing detergent by gel filtration, dialysis or by absorption to Bio-Beads. When the membrane was solubilized with octylglucoside or cholate at weight ratios of detergent: membrane protein of at least 10, the activity was irreversibly lost unless stabilizers were added with detergent. The substrate diacylglycerol and glycerol were effective stabilizers.  相似文献   

8.
Sphingomyelin constitutes membrane microdomains such as lipid raft, caveolae, and clathrin-coated pits and implicates in the regulation of trans-membrane signaling. On the other hand, sphingomyelin emerges as an important molecule to generate bioactive sphingolipids through ceramide. Sphingomyelin synthase is an enzyme that generates sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Although ceramide has a well-known role as a lipid mediator to regulate cell death and survival, the only known biological role of sphingomyelin regulated by sphingomyelin synthases was limited to being a source of bioactive lipids. Here, we describe the basic characters of sphingomyelin synthases and discuss additional roles for sphingomyelin and sphingomyelin synthase in biological functions including cell migration, apoptosis, autophagy, and cell survival/proliferation as well as in human disorders such as cancer and cardiovascular disorders. It is expected that a better understanding of the role of sphingomyelin regulated by sphingomyelin synthase will shed light on new mechanisms in cell biology, physiology and pathology. In the future, novel therapeutic procedures for currently incurable diseases could be developed through modifying the function of not only sphingolipids, such as sphingomyelin and ceramide, but also of their regulatory enzymes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

9.
E Albi  M V Magni 《FEBS letters》1999,460(2):369-372
The presence of phospholipids in chromatin has been demonstrated, as well as the difference in composition and turnover compared to those present in the nuclear membrane. Recently, some enzymes were also evidenced in chromatin: the base exchange protein complex and neutral sphingomyelinase. The latter has a particular relevance, since sphingomyelin is one of the phospholipids more represented in chromatin. We therefore decided to study the synthesis of sphingomyelin in chromatin and in nuclear membrane isolated from liver nuclei. The evaluation of the enzyme was made (i) using [(3)H]phosphatidylcholine as donor of radioactive phosphorylcholine and (ii) by identifying the product isolated by thin layer chromatography. In both fractions the enzyme phosphatidylcholine:ceramide phosphocholine transferase or sphingomyelin synthase was present, although with higher activity in nuclear membrane. The enzyme present in the chromatin differs in pH optimum and K(m), showing a higher affinity for the substrates than that of nuclear membrane. The results presented show that sphingomyelin synthase is present not only in the cytoplasm at the level of the Golgi apparatus, but also in the nuclei, at the level of either the nuclear membrane or the chromatin.  相似文献   

10.
Sphingomyelin is synthesized in the cis Golgi   总被引:11,自引:0,他引:11  
We have employed in vitro a truncated ceramide analogue with 8 carbon atoms in the sphingosine and the fatty acyl residue, each, to investigate the activity of various membrane fractions to synthesize truncated sphingomyelin. This shortened ceramide readily diffuses through membranes and therefore can easily find access to the lumina of intact organelles. Sphingomyelin synthase activity resides in the Golgi apparatus, and after sucrose density gradient centrifugation of Golgi-enriched fractions sphingomyelin synthesis follows a cis Golgi marker enzyme.  相似文献   

11.
We have identified mouse sphingomyelin synthase 1 as a novel suppressor of the growth inhibitory effect of heterologously expressed Bax. Yeast cells expressing sphingomyelin synthase 1 were also found to show an increased resistance to a variety of cytotoxic stimuli including hydrogen peroxide, osmotic stress and elevated temperature. Sphingomyelin synthase 1 functions by catalyzing the conversion of ceramide and phosphatidylcholine to sphingomyelin and diacylglycerol. Ceramide is an antiproliferative and proapoptotic sphingolipid whose level increases in response to a variety of stresses. Consistent with its biochemical function, yeast cells expressing sphingomyelin synthase 1 have an enhanced ability to grow in media containing the cell-permeable C2-ceramide analog as well as the ceramide precursor phytosphingosine. We also show that overexpression of AUR1, a potential yeast functional homolog of sphingomyelin synthase, also protects cells from osmotic stress. Taken together, these results suggest that sphingomyelin synthase 1 likely prevents cell death by counteracting stress-mediated accumulation of endogenous sphingolipids.  相似文献   

12.
Mouse liver microsomes were shown to be active in the synthesis of sphingomyelin from ceramide and phosphatidylcholine in a reaction independent of CDPcholine. The conversion was not inhibited by calcium chelating reagents, and no evidence for the involvement of phospholipase C activity in the transformation could be adduced. Activity was also demonstrated in monkey liver and heart microsomes. Mouse brain microsomes produced a sphingomyelin analogue, tentatively identified as ceramide phosphorylethanolamine, but not sphingomyelin. Both [14C]ceramide and [G-14]phosphatidylethanolamine were precursors of the brain product, while phosphatidylcholine was inactive. Progress in the partial characterization of the liver enzyme is also described.  相似文献   

13.
The currently accepted model of biological membranes involves a heterogeneous, highly dynamic organization, where certain lipids and proteins associate to form cooperative platforms (“rafts”) for cellular signaling or transport processes. Ceramides, a lipid species occurring under conditions of cellular stress and apoptosis, are considered to stabilize these platforms, thus modulating cellular function. The present study focuses on a previously unrecognized effect of ceramide generation. In agreement with previous studies, we find that ceramide leads to a depletion of sphingomyelin from mixtures with palmitoyl oleoyl phosphatidylcholine bilayers, forming a ceramide–sphingomyelin-rich gel phase that coexists with a fluid phase rich in palmitoyl oleoyl phosphatidylcholine. Interestingly, however, this latter phase has an almost fourfold smaller bending rigidity compared to a sphingomyelin–palmitoyl oleoyl phosphatidylcholine mixture lacking ceramide. The significant change of membrane bulk properties can have severe consequences for conformational equilibria of membrane proteins. We discuss these effects in terms of the lateral pressure profile concept for a simple geometric model of an ion channel and find a significant inhibition of its activity.  相似文献   

14.
Cultured murine neuroblastoma cells contain a neutral, Mg2+-stimulated sphingomyelinase and an alkaline phosphatidylcholine-hydrolyzing activity that are enriched in the plasma membrane fraction. The reaction products of sphingomyelin catabolism are phosphocholine and ceramide and those of phosphatidylcholine, glycerophosphocholine and fatty acid. These reactions were studied with endogenous as well as exogenous liposomal substrates. With both exogenous and endogenous substrates, the sphingomyelinase activity was stimulated two- to threefold by Mg2+ and a further three- to fourfold by volatile anesthetic agents. Stimulation was concentration-dependent and corresponded to anesthetic potency: methoxyflurane greater than halothane greater than enflurane. Greater than 80% of the plasma membrane sphingomyelin was hydrolyzed within 2 h in the presence of Mg2+ and anesthetic. In contrast, the activity with exogenous and endogenous phosphatidylcholine was unaffected by Mg2+ or Ca2+ and was markedly inhibited (50-80%) by anesthetic agents. The degree of inhibition was concentration-dependent and corresponded to anesthetic potency. The quantitative importance of choline-containing lipids in cell membranes, the relatively exclusive localization of the neutral Mg2+-stimulated sphingomyelinase in cells of neural origin, the totally different type of hydrolytic attack on phosphatidylcholine, and the reciprocal effects of anesthetics on the hydrolysis of these two lipids strongly suggest important roles for these activities in cell membranes in general and in the neuron in particular.  相似文献   

15.
The activity of purified recombinant yeast dolichyl-phosphomannose synthase (EC 2.4.1.83) was assessed following reconstitution of the enzyme with phospholipids. The yeast synthase, similar to the mammalian enzyme, was active when reconstituted with phosphatidylethanolamine dispersions but had little (less than 5%) activity in stable phosphatidylcholine bilayers. The enzyme was activated by adding increasing amounts of diacylglycerol to phospholipid bilayers, suggesting that activity of the yeast enzyme was dependent on lipid phase properties rather than specific phospholipids. The synthase could also be reconstituted as an active enzyme in bilayers prepared with a commercial crude lipid preparation containing 40% phosphatidylcholine, but at a rate 10% of that occurring in phosphatidylethanolamine. Vesicles composed of the 40% phosphatidylcholine lipid mixture, dolichyl phosphate, and enzyme were leaky in the presence of divalent cations, and dolichyl-phosphomannose synthase did not appear to catalyze the translocation of dolichyl phosphomannose across membranes at a catalytically significant rate under the assay conditions employed.  相似文献   

16.
We recently reported that the marked decrease in cellular ceramide in primary astrocytes is an early event associated with the mitogenic activity of basic fibroblast growth factor (bFGF) (Riboni, L., Viani, P., Bassi, R., Stabieini, A., and Tettamanti, G. (2000) GLIA 32, 137-145). Here we show that a rapid activation of sphingomyelin biosynthesis appears to be the major mechanism responsible for the fall in ceramide levels induced by bFGF. When quiescent astrocytes were treated with bFGF, an increased amount of newly synthesized ceramide (from either l-[(3)H]serine or [(3)H]sphingosine) was directed toward the biosynthesis of sphingomyelin. Conversely, bFGF did not appear to affect ceramide levels by other metabolic pathways involved in ceramide turnover such as sphingomyelin degradation and ceramide biosynthesis, degradation, and glucosylation. Enzymatic studies demonstrating a relevant and rapid increase in sphingomyelin synthase activity after bFGF treatment have provided a convincing explanation for the activation of sphingomyelin biosynthesis. The bFGF-induced increase in sphingomyelin synthase appears to depend on a post-translational activation mechanism. Moreover, in the presence of brefeldin A, the activation of sphingomyelin biosynthesis was abolished, suggesting that the enzyme is located in a compartment other than the Golgi apparatus. Also the phosphatidylcholine-specific phospholipase C inhibitor D609 exerted a potent inhibitory effect on sphingomyelin biosynthesis. Finally, we demonstrate that inhibition of sphingomyelin biosynthesis by brefeldin A or D609 led to a significant inhibition of bFGF-stimulated mitogenesis. All this supports that, in primary astrocytes, the early activation of sphingomyelin synthase is involved in the bFGF signaling pathway leading to proliferation.  相似文献   

17.
Pulse-chase experiments showed that phosphatidylethanolamine (PE) was the direct precursor for ceramide-phosphoethanolamine, a sphingomyelin analogue, in the same way as phosphatidylcholine was for sphingomyelin. Ceramide-phosphoethanolamine could be identified by incorporation of radioactivity from labeled PE, as well as by its stability in alkaline methanolysis and its ability to be methylated by S-adenosyl-methionine. Ceramide-phosphoethanolamine synthesis from labeled exogenous PE seemed to be independent of exogenous ceramide; it was proportional to the amount of incubated membrane, when taking into account the isotopic dilution of labeled precursor by endogenous PE. Sphingomyelin synthesis, which was demonstrated using natural PC as a substrate, was not possible using dipalmitoyl-PC. The formation of sphingomyelin and ceramide-phosphoethanolamine was demonstrated in microsomes and plasma membranes from rat brain and liver.  相似文献   

18.
The reconstitution of Na+/K+-ATPase from outer medulla of rabbit kidney into large unilamellar liposomes was achieved through detergent removal by dialysis of mixed micellar solutions of synthetic dioleoyl phosphatidylcholine/octyl glucoside and Na+/K+-ATPase/decyl maltoside or decenyl maltoside. Tight, transport-active liposomes were formed when the lipid and the enzyme were solubilized separately in the nonionic detergents and mixed immediately before starting the dialysis. The two maltoside detergents with different structures of the hydrophobic part of the molecule proved to be well suited for the solubilization of Na+/K+-ATPase with high retention of enzyme activity; the inactivation of enzyme being evidently slower with the unsaturated decenyl maltoside. The diameters of the proteoliposomes, 110 and 170 nm, respectively, were also dependent on the structure of the maltoside detergent, the saturated decyl maltoside producing the bigger liposomes. After freeze-fracture, both preparations exhibited intramembranous particles as structural indicators of successful reconstitution. The electrogenic activity of the reconstituted enzyme was determined by fluorescence measurements with Oxonol VI and by tracer-flux measurements with 22Na+.  相似文献   

19.
Sphingolipid signaling plays an important, yet not fully understood, role in diverse aspects of cellular life. Sphingomyelinase is a major enzyme in these signaling pathways, catalyzing hydrolysis of sphingomyelin to ceramide and phosphocholine. To address the related membrane dynamical structural changes and their feedback to enzyme activity, we have studied the effect of enzymatically generated ceramide in situ on the properties of a well-defined lipid model system. We found a gel-phase formation that was about four times faster than ceramide generation due to ceramide-sphingomyelin pairing. The gel-phase formation slowed down when the ceramide molar ratios exceeded those of sphingomyelin and stopped just at the solubility limit of ceramide, due to unfavorable pairwise interactions of ceramide with itself and with monounsaturated phosphatidylcholine. A remarkable correlation to in vitro experiments suggests a regulation of sphingomyelinase activity based on the sphingomyelin/ceramide molar ratio.  相似文献   

20.
Abstract: In most cell types the major pathway of sphingomyelin synthesis is the direct transfer of the phosphocholine head group from phosphatidylcholine to ceramide catalyzed by the enzyme l -acylsphingosine:phosphatidylcholine phosphocholinetransferase (SM synthase; EC 2.7.8.-). Although this pathway has been demonstrated in brain tissue, its quantitative importance has been questioned. An alternative biosynthetic pathway for sphingomyelin synthesis in brain tissue has been proposed, viz., the direct transfer of phosphoethanolamine from phosphatidylethanolamine to ceramide, followed by methylation of the ethanolamine moiety to a choline group. We have evaluated various possible biosynthetic pathways of sphingomyelin synthesis in rat spinal cord oligodendrocytes, the myelin-forming cells of the CNS, by labeling cells in culture with radiolabeled choline, ethanolamine, or serine. Our results indicate that, in oligodendrocytes, most of the phosphocholine for the biosynthesis of sphingomyelin is provided by phosphatidylcholine, which is predominantly derived from de novo synthesis. No evidence was found for the operation of the alternative pathway via ceramide-phosphoethanolamine. Furthermore, our results indicate that a small pool of phosphatidylcholine is provided by methylation of phosphatidylethanolamine, which in turn is formed preferentially by decarboxylation of phosphatidylserine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号