首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The innermost chorionic layer (ICL) in eggshells of Drosophila melanogaster is a naturally occurring patchwork of thin three-dimensional crystalline plates located between the inner endochorion and the vitelline envelope. The mass-per-unit area of the ICL has been measured from scanning transmission electron microscope images of isolated unstained material and it was possible to distinguish up to four layers with the majority of the crystalline sheets being one to three layers thick. Taking into account the unit cell areas for the different crystals, we have estimated the mean ICL subunit sizes to be 36 kDa for Drosophila melanogaster, 35 kDa for Drosophila auraria, and 33 kDa for Drosophila teissieri. The results suggest that the three different Drosophilidae species have very similar average subunit masses.  相似文献   

2.
A crystalline layer has been identified as a constituent of the eggshell in the dipteran Drosophila melanogaster. This 400A thick intermediate chorionic layer (ICL) is composed of eight 50A thick sublayers and lies between the vitelline membrane and the endochorion. Whole mount views of isolated ICL after negative staining reveal P2 planar periodicity which, when analyzed further by optical diffraction and filtering, showed 1st (100A), 2nd, 3rd and 4th order reflections.  相似文献   

3.
A low-resolution three-dimensional structure of the crystalline innermost chorion layer (ICL) has been calculated from electron microscope images of tilted negatively stained crystals. The isolated ICL is a single layer, about 12 nm thick and appears to be made up of two types of subunits, each approximately 3 nm in diameter, arranged regularly as groups of four heterodimers in space group C222. Linking density between these groups of subunits, maintaining the integrity of the layer, appears to be confined mainly to the outer surfaces of the ICL.  相似文献   

4.
A low-resolution three-dimensional structure of the crystalline innermost chorion layer (ICL) has been calculated from electron microscope images of tilted negatively stained crystals. The isolated ICL is a single layer, about 12 nm thick and appears to be made up of two types of subunits, each approximately 3 nm in diameter, arranged regularly as groups of four heterodimers in space group C222. Linking density between these groups of subunits, maintaining the integrity of the layer, appears to be confined mainly to the outer surfaces of the ICL.  相似文献   

5.
Germ line transformation has been used to map the cis regulatory DNA elements responsible for the precise and evolutionarily stable developmental expression of the s18 chorion gene. Constructs containing chimeric combinations of Drosophila melanogaster and D. grimshawi DNA regions, as well as D. grimshawi sequences alone, can direct expression in the follicular epithelium, in an s18-specific temporal and spatial pattern. The results indicate that both positive and negative regulatory elements can function when transferred from D. grimshawi to D. melanogaster. The first ca. 100 bp of the 5'-flanking DNA region constitute a minimal, developmentally regulated promoter, expression of which is inhibited by the next 100-bp DNA segment and activated by positive elements located further upstream. Expression of the minimal promoter can also be enhanced by more distant chorion regulatory elements, provided the inhibitory DNA segment is absent.  相似文献   

6.
The innermost chorionic layer (ICL) within egg shells of Drosophila melanogaster is composed of thin, abutting three-dimensional crystalline plates which form a closed, membrane-like sheath. Collectively, the crystals within the sheath appear to form a family of related three-dimensional crystals in space group C222; however, specimens prepared for electron microscopy are actually two-dimensional crystals in c222. The projected structures of the negatively stained crystals have been studied by minimal dose electron microscopy employing image reconstruction methods. Thin sections indicate that unit cells within the ICL are composed of paired layers; top and bottom layers are related by centrally located 2-fold axes, aligned parallel to the surface of the ICL. The most probable structural unit of the crystals is a tetramer of chorin dimers with a point group symmetry of 222, which is denoted a chorin octamer. Projection maps were computed from average transforms of two-dimensional crystals for delta (the primitive unit cell angle) equal to 84 degrees, 90 degrees and 97 degrees (+/- 1.5 degrees). The maps indicate that the molecular transitions responsible for the observed family of crystals involve concerted intramolecular rearrangements about molecular 2-fold axes. The significance in vivo of the family of crystals within the ICL is not known; however, structural considerations suggest that the observed polymorphism may reflect one facet of an intrinsic bonding flexibility of the ICL octamer that may play a role in the formation of interplate junctions and the assembly of a continuous closed sheath. The ICL may therefore serve as a structural bridge between the vitelline membrane-wax layer and the endochondrial floor, allowing the larva to shed the inner egg shell layers during hatching.  相似文献   

7.
Eight X-linked recessive female sterile mutations, derived from a hybrid dysgenic screen of Drosophila melanogaster and representing eight distinct loci, have been characterized by genetic and ultrastructural analysis. Four have abnormal respiratory appendages, three have essentially normal appendages but show moderate defects in the endochorion, and one mutant, fs(1)ne1a, exhibits major defects in both the endochorion and the respiratory appendages. Germ line clones of all eight mutants were generated using the dominant female sterile technique. Seven of the eight mutations are germ line specific, indicating that, although the eggshell is produced by the follicular cells, germ line functions play a significant role in its elaboration. The mutant that shows major defects, fs(1)ne1a, is somatic line specific, and exerts its effect in the ovary.  相似文献   

8.
The innermost chorionic layer (ICL) within egg shells of Drosophila is composed of a family of related, thin three-dimensional crystals that form a continuous sheath encapsulating the egg shell lumen. Junctions formed by interdigitating lattices play a central role in the construction of this macroscopic assembly. The three-dimensional structure of a two-dimensional crystal isolated from the ICL, with a primitive lattice angle delta of 90 degrees, has been determined from a complete tilt series of a negatively contrasted specimen at a resolution of 25 A. Inspection of the three-dimensional transform after data merging revealed that the space group is c222 and this symmetry was employed to generate a three-dimensional structure. The basic structural unit of the ICL is an octamer, described formally as a tetramer of dimers with point group symmetry 222. There are two classes of dimer in the octamer designated alpha and beta. The chorin octamer is composed of two classes of bent dimers, which make intramolecular contacts at the top and bottom of the molecule. The alpha-dimers are curved outwards away from the crystallographic 2-fold axis, while the beta-dimers are curved towards the molecular center. In addition, lattice contacts are formed primarily by beta-chorin dimers at both the top and bottom surfaces of the unit cell. The molecular weight of a chorin octamer determined from the analysis is about 6 X 10(5). The conformation of the chorin octamer determined here suggests that permutations of a basic molecular mechanism may be adequate to explain both the observed lattice polymorphisms of the ICL and the formation of interplate junctions necessary for the assembly of the macroscopic sheath.  相似文献   

9.
Seven noncomplementing female sterile mutations that affect eggshell assembly in Drosophila have been mapped to the 7C1-3 region of the X-chromosome. TEM of the mature eggshell of one of the alleles, fs(1)410, shows a lack of organization within the endochorion and an accumulation of electron dense material in the vitelline membrane of stage 14 eggchambers. SDS-PAGE of radiolabeled eggshell proteins shows that two proteins, s67 and s85, fail to accumulate in the fs(1)410 eggshell. In wild-type flies s85 is produced during stage 10 of oogenesis and then processed to s67 in stages 13 and 14. Neither s85 nor an additional stage 10 specific follicle cell protein (s130) are detected in fs(1)410 or four of the mutant alleles. Short-term labeling studies, analyses of in vitro translation products, and the simultaneous occurrence of s85 and s130 as electrophoretic variants in geographic fly strains indicate s85 is derived from s130. Although major biochemical differences appear in stage 10, mutant and wild-type eggshells are morphologically indistinguishable until stages 13-14. These results suggest that follicle cell proteins synthesized during the time of vitelline membrane deposition (stage 10) are important for proper assembly of the chorion layers during stages 13 and 14.  相似文献   

10.
We have isolated clones corresponding to the autosomal chorion locus of Drosophila melanogaster, from two distantly (D. virilis and D. grimshawi) and one closely (D. subobscura) related species. In all the species the locus is unique within the genome and encompasses the same four chorion genes and an adjacent nonchorion gene, in the same order. In all species the locus specifically amplifies in the ovary, as in D. melanogaster. We present the nucleotide sequences of DNA segments that total 8.3 kb in length and include gene s15-1 from D. subobscura, D. virilis, and D. grimshawi as well as gene s19-1 from D. subobscura and D. grimshawi. They show clearly nonuniform rates of divergence, both within and outside the limits of the genes. Highlighted by a background of extensive sequence divergence elsewhere in the extragenic region, highly conserved elements are observed in the 5' flanking DNA and might represent regulatory elements.  相似文献   

11.
12.
Specific mutations in the yolk protein genes, yp1 and yp2, of Drosophila melanogaster cause the yolk proteins (YPs) they encode to precipitate, ultimately resulting in female sterility. YPs of the yp1 mutant fs(1)1163 are secreted normally but then precipitate as globules and occasionally as crystalline fibers in the subbasement membrane space of the fat body (Butterworth et al., 1991, J. Cell Biol. 112, 727-737). The present ultrastructural and immunological studies of the fat body of the yp2 mutant fs(1)K313 show that YP also precipitates as globules in the same tissue compartment. The globules are also incapable of passing into the hemolymph but they are morphologically distinct from those of fs(1)1163. Similar analyses were performed on developing oocytes in wild type and both mutant strains. YP-containing aggregates, ultrastructurally similar to those in the fat body of each respective mutant, were found in the space between the plasmalemma and the vitelline membrane and embedded within the membrane itself. The evidence suggests that the precipitates interfere with the correct assembly of the eggshell membranes, leading to the sterile phenotype. Immunogold studies demonstrate that newly synthesized YPs in the normal and mutant strains share secretory vesicles with putative, vitelline membrane proteins and that the translocation of follicle cell YP is not through the membrane along the interfollicular spaces but directly through the plasmalemma facing the oocyte. Further the YP precipitates in the mutants permit visualization of the polarity of exocytosis of YP from the follicle cells.  相似文献   

13.
C. Y. Wu  J. Mote-Jr.    M. D. Brennan 《Genetics》1990,125(3):599-610
Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed.  相似文献   

14.
Eggshell formation in Drosophila melanogaster is used as a model system in studies of cellular differentiation. A detailed knowledge of eggshell structure is necessary for this purpose and also to permit correlation of eggshell structure with function. Unique among the eggshell layers, the innermost chorionic layer (ICL) was investigated by means of transmission electron microscopy of thin sections and whole mounts, utilizing conventional fixation. LaNO3 impregnation and negative staining with uranyl acetate. Whole mount face views of negatively stained ICLs were processed by means of optical and computer reconstruction. The ICL, which almost fully covers the oocyte, consists of 4 5 bilaminar sublayers with a total thickness of 400–500 Å. It appears to be formed by crystallites 1– μm in size, containing roughtly spherical molecules which are 30 Å in diameter approximately. Each unit cell probably includes 8 molecules and also distinct vacant spaces, differing in size, ICL may be involved in the exchange of the respiratory gases during embryogenesis.  相似文献   

15.
In Drosophila melanogaster and the endemic Hawaiian species D. grimshawi three Yolk protein (Yp) genes are expressed in a similar sex- and tissue-specific pattern. In contrast, DNA sequence comparisons of promoter/enhancer regions show low levels of similarity. We tested the functional significance of these observations by transforming D. melanogaster with the genomic region that includes the divergently transcribed D. grimshawi DgYp1 and DgYp2 genes; we found that the introduced genes were expressed in female fat body and in ovaries but not in males. Moreover, we found D. grimshawi proteins in the hemolymph and accumulating in ovaries. Using reporter constructs we showed that the intergenic region from D. grimshawi was sufficient to drive accurate expression, but some low level of ectopic expression was seen in males. Transforming D. melanogaster with constructs bearing deletions within the D. grimshawi intergenic region revealed only subtle effects in the overall level of expression, suggesting a high level of redundancy. Testing mutants in the sex-specific regulator doublesex revealed that it is capable of repressing the DgYp genes in males. Together, these data show that D. melanogaster trans-acting factors can regulate the in vivo pattern of DgYp expression and support the notion of a redundant and complex system of cis-acting elements.  相似文献   

16.
A total of 752 odorant receptor (Or) genes, including pseudogenes, were identified in 11 Drosophila species and named after their orthologs in Drosophila melanogaster. The 813 Or genes, including 61 from D. melanogaster, were classified into 59 orthologous groups that are well supported by gene phylogeny. By reconciling with the gene family phylogeny, we estimated the number of gene duplication/loss events and intron gain/loss events in the species phylogeny. We found that these events are particularly frequent in Drosophila grimshawi, Drosophila willistoni, and obscura group. More than half of the duplicated genes stay as tandem arrays, whose size range from 2 to 8. These genes vary in sequence and some likely underwent positive selection, indicating that the gene duplication was important for flies to acquire new olfactory functions. We hypothesize that Or genes conferred the basic olfactory repertoire to ancestral flies before the speciation of the Drosophila and Sophophora subgenera about 40 Mya. This repertoire has been largely maintained in the current species, whereas lineage-specific gene duplication seems to have led to additional specialization in some species in response to specific ecological conditions.  相似文献   

17.
Abstract. During the final step of Drosophila vitelline membrane formation, the structural proteins composing this layer become cross-linked by covalent bonds. In the present report, we analyzed the vitelline membrane cross-linking in mutants having defects either in this layer or in the chorionic layers. In the fs(1)Nasrat and fs(1)polehole mutant alleles conferring defects in vitelline membrane formation, disruption of vitelline membrane cross-linking was observed, indicating the involvement of these two genes in the process. On the contrary, in the fs(1)Nasrat and fs(1)polehole alleles showing defects only at the termini of the embryo the vitelline membrane is properly formed, confirming a multifunctional activity of their gene products. Altered vitelline membrane cross-linking was also detected in a mutant of the chorion protein gene Cp36and in the chorion amplification mutant fs(1)K1214, suggesting a role of the structural components of chorion layers in the process of vitelline membrane hardening.  相似文献   

18.
Drosophila melanogaster, unlike mammals, has seven insulin-like peptides (DILPS). In Drosophila, all seven genes (dilp1-7) are single copy in the 12 species studied, except for D. grimshawi with two tandem copies of dilp2. Our comparative analysis revealed that genes dilp1-dilp7 exhibit differential functional constraint, which is indicative of some functional divergence. Species of the subgenera Sophophora and Drosophila differ in some traits likely affected by the insulin-signaling pathway, such as adult body size. It is in the branch connecting the two subgenera that we found the footprint left by positive selection driving nonsynonymous changes at some dilp1 codons to fixation. Finally, the similar rate at which the two dilp2 copies of D. grimshawi have evolved since their duplication and the presence of a putative regulatory region highly conserved between the two paralogs would suggest that both copies were preserved either because of subfunctionalization or dose dependency rather than by the neofunctionalization of one of the two copies.  相似文献   

19.
A minor chorion protein (called s70) with an approximate molecular weight of 70,000 D has been characterized in Drosophila melanogaster. The Staket geographic strain was found to carry an electrophoretic variant of this eggshell component and was used to determine the chromosomal location of the s70 gene. Our results establish a new locus for a chorion gene near yellow on the X chromosome and represent the first mapping of a quantitatively minor eggshell protein.  相似文献   

20.
Four female-sterile mutants, fs(1)K451, fs(1)K1214, fs(1)K575TS, and fs(1)384, were studied in terms of chorion structure and chorion protein composition. The first three of these mutants cause morphological defects, ie, substantial underproduction and disruption of the endochorion, correlated with underproduction of the six major chorion proteins, s15-s38; the phenotypes are consistent with the observation that these mutants interfere with amplification of the major chorion genes that encode the s15-s38 proteins [Orr et al.: Proc Natl Acad Sci USA 81:3773-3777, 1984; Komitopoulou et al.: Dev Genet 7:75-80, 1986]. The fourth mutant, fs(1)384, and its alleles do not interfere with production of the major chorion proteins and the morphologically detectable bulk of the endochorion but lead to failure of endochorionic organization. Apparently this complementation group is responsible for a minor chorion product, which is evidently important morphogenetically and which is processed posttranslationally in a complex manner [Bauer and Waring: Dev Biol 121:349-358, 1987].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号