首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions were found that allowed both the fluorescence detection of vanadate binding to the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum and the vanadate-induced formation of two-dimensional arrays of the enzyme. The fluorescence intensity of fluorescein isothiocyanate-labeled Ca2+-ATPase increased with high-affinity vanadate binding (Ka = 10(6) M-1) as reported by Pick and Karlish (Pick, U. and Karlish, S.D. (1982) J. Biol. Chem. 257, 6120-6126). The Ca2+ and Mg2+ dependencies for high-affinity vanadate binding were similar but not identical to those for orthophosphate. In addition, it was found that there is low-affinity (Ka = 380 M-1) vanadate binding, which causes a 25% decrease in fluorescence. The Ca2+ and Mg2+ dependencies of the low-affinity vanadate binding were different from those of orthophosphate or high-affinity vanadate binding. The covalent attachment of fluorescein isothiocyanate (FITC) in the ATP site of the Ca2+-ATPase did not affect the formation of two-dimensional arrays, as detected by negatively stained electron micrographs. Vanadate concentrations high enough to saturate the low-affinity binding caused two-dimensional arrays as reported by Dux and Martonosi (Dux, L. and Martonosi, A. (1983) J. Biol. Chem. 258, 2599-2603). In addition, freeze-fracture replicas of quick-frozen specimens showed rows of indentations in the inner leaflet of the bilayer that corresponds to the arrays seen on the outer leaflet. This appearance of indentations suggests that low-affinity vanadate binding causes a transmembrane movement of the Ca2+-ATPase. By contrast, high-affinity vanadate binding was shown to cause neither array formation nor the appearance of indentations.  相似文献   

2.
Continuing our investigation of the relationships between internal motions and functional properties of soluble and membrane-bound proteins we have explored the lifetimes and correlation times associated with the fluorescence emission of fluorescein-labeled Ca2+-dependent ATPase of sarcoplasmic reticulum. The emission was characterized by two lifetime components near 1.8 and 4.1 ns, probably due to exposure of the probe to environments of different polarities. The time-dependent anisotropy showed the presence of two correlation times near 0.8 and 6.6 ns. The shorter correlation time was due to motions of the probe around its point of attachment on the surface of the protein. The longer correlation time indicated the presence of internal motions of the protein. Both lifetimes and correlation times were insensitive to temperature between 2 and 10 degrees C. They were also insensitive to addition and removal of 100 microM free Ca2+.  相似文献   

3.
Amphipols are short-chain amphipathic polymers designed to keep membrane proteins soluble in aqueous solutions. We have evaluated the effects of the interaction of amphipols with sarcoplasmic reticulum Ca(2+)-ATPase either in a membrane-bound or a soluble form. If the addition of amphipols to detergent-solubilized ATPase was followed by removal of detergent, soluble complexes formed, but these complexes retained poor ATPase activity, were not very stable upon long incubation periods, and at high concentrations they experienced aggregation. Nevertheless, adding excess detergent to diluted detergent-free ATPase-amphipol complexes incubated for short periods immediately restored full activity to these complexes, showing that amphipols had protected solubilized ATPase from the rapid and irreversible inactivation that otherwise follows detergent removal. Amphipols also protected solubilized ATPase from the rapid and irreversible inactivation observed in detergent solutions if the ATPase Ca(2+) binding sites remain vacant. Moreover, in the presence of Ca(2+), amphipol/detergent mixtures stabilized concentrated ATPase against inactivation and aggregation, whether in the presence or absence of lipids, for much longer periods of time (days) than detergent alone. Our observations suggest that mixtures of amphipols and detergents are promising media for handling solubilized Ca(2+)-ATPase under conditions that would otherwise lead to its irreversible denaturation and/or aggregation.  相似文献   

4.
The interaction of vanadate with the Ca2+-ATPase of sarcoplasmic reticulum vesicles has been studied by making use of the ATPase activity as a measure of uncomplexed enzyme. The binding/dissociation is slow, so that initial rates can be used to study the equilibrium binding. The results indicate that in addition to a Ca2+-free complex E.Van (KV = 0.4 microM), there must also be a Ca2+-enzyme-vanadate complex (K'V = 7 microM). This observation is confirmed by the difference between the kinetics of decay of activity on vanadate addition, and on addition of ATP to enzyme preincubated with vanadate and Ca2+, which requires two enzyme-vanadate complexes. ATP increases the apparent affinity of the enzyme for vanadate by inducing calcium release. Upper limits for the kinetic parameters for vanadate binding and dissociation are estimated.  相似文献   

5.
Fractionation of sarcoplasmic reticulum vesicles from rabbit skeletal muscle was performed by solubilization of the vesicles in the presence of deoxycholate, followed by sucrose density gradient centrifugation and gel filtration chromatography. This procedure permitted the isolation of essentially pure Ca2+-ATPase; this enzyme showed ATPase as well as acylphosphatase activity, both activities being clearly enhanced by deoxycholate. The acylphosphatase activity of the purified Ca2+-ATPase was characterized with regard to some kinetic properties, such as pH, Mg2+, Ca2+, and deoxycholate dependence, and substrate affinity, determined in the presence of acetylphosphate, succinylphosphate, carbamylphosphate, and benzoylphosphate; in addition, the stability of both activities was checked in time-course experiments. The main similarities between the two activities, such as the Mg2+ requirement, the deoxycholate activation, and the pH dependence, together with the competitive inhibition of the benzoylphosphatase activity by ATP, the inhibition of both activities by tris(bathophenanthroline)-Fe2+, and the relief of this inhibitory effect by carbonylcyanide-4-trifluoromethoxyphenyl hydrazone support the hypothesis that acylphosphatase and ATPase activities of sarcoplasmic reticulum vesicles reside in the same active site of the enzyme. With regard to possible relationships between acylphosphatase activity of the purified Ca2+-ATPase and “soluble” acylphosphatase present in the 100,000g supernatant fraction, comparison of some kinetic and structural parameters indicate that these two activities are supported by quite different enzymes.  相似文献   

6.
Summary This review summarizes studies on the structural organization of Ca2+-ATPase in the sarcoplasmic reticulum membrane in relation to the function of the transport protein. Recent advances in this field have been made by a combination of protein-chemical, ultrastructural, and physicochemical techniques on membraneous and detergent solubilized ATPase. A particular feature of the ATPase (Part I) is the presence of a hydrophilic head, facing the cytoplasm, and a tail inserted in the membrane. In agreement with this view the protein is moderately hydrophobic, compared to many other integral membrane proteins, and the number of traverses of the 115 000 Dalton peptide chain through the lipid may be limited to 3–4.There is increasing evidence (Part II) that the ATPase is self-associated in the membrane in oligomeric form. This appears to be a common feature of many transport proteins. Each ATPase peptide seems to be able to perform the whole catalytic cycle of ATP hydrolysis and Ca2+ transport. Protein-protein interactions seem to have a modulatory effect on enzyme activity and to stabilize the enzyme against inactivation.Phospholipids (Part III) are not essential for the expression of enzyme activity which only requires the presence of flexible hydrocarbon chains that can be provided e.g. by polyoxyethylene glycol detergents. Perturbation of the lipid bilayer by the insertion of membrane protein leads to some immobilization of the lipid hydrocarbon chains, but not to the extent envisaged by the annulus hypothesis. Strong immobilization, whenever it occurs, may arise from steric hindrance due to protein-protein contacts. Recent studies suggest that breaks in Arrhenius plots of enzyme activity primarily reflect intrinsic properties of the protein rather than changes in the character of lipid motion as a function of temperature.  相似文献   

7.
Rabbit muscle sarcoplasmic reticulum Ca2+-ATPase has been shown to bind gadolinium ion (Gd3+) at two high affinity Ca2+ sites (Stephens, E. M., and Grisham, C. M. (1979) Biochemistry 18, 4876-4885). Gd3+ bound at these sites exhibits an unusually long electron spin relaxation time, consistent with occlusion of these sites and reduced contact with solvent H2O. In this report, the nature of the Gd3+ sites was examined in preparations of the enzyme solubilized with the detergent C12E8. The frequency dependence of water proton relaxation in solutions containing the solubilized Ca2+-ATPase yields dipolar correlation times, tau c, for the 1H-Gd3+ interaction of 1.04 X 10(-9) s for Gd3+ bound at site 1 and 1.98 X 10(-9) s for Gd3+ bound at site 2. The correlation time itself is frequency dependent below 30 MHz, indicating that the correlation time is dominated by the electron spin relaxation time of bound Gd3+. The long values of the correlation time found in the present study are consistent with a poor accessibility of these Gd3+ sites (particularly site 2) to solvent water molecules. Analytical ultracentrifugation and molecular sieve high performance liquid chromatography indicated that the active fraction of the soluble Ca2+-ATPase was monomeric. Thus occlusion of the Ca2+ sites in this enzyme is largely dependent on the tertiary structure of the monomeric ATPase and does not appear to depend on multimeric membrane structures.  相似文献   

8.
The mechanism of ATP hydrolysis was studied at 0 degrees C and pH 7.5 using purified leaky vesicles of sarcoplasmic reticulum Ca2+-ATPase and enzyme solubilized in monomeric form with high concentrations of octaethylene glycol monododecyl ether (C12E8). The enzyme reaction of membranous Ca2+-ATPase was characterized by an initial burst in the hydrolysis of ATP and modulated by millimolar concentrations of ATP. For detergent-solubilized Ca2+-ATPase no burst and moderate low affinity modulation was observed, but the reaction was activated both at low (phosphorylating) and intermediate (K0.5 = 0.06 mM) ATP concentrations. A study of the partial reactions indicated that the effects of detergent and ATP were attributable to activation of the E1P----E2P transition which was rate-limiting. E32P dephosphorylation of membranous Ca2+-ATPase and the detergent-solubilized monomer comprised both a slow and a rapid component. The inhibitory effect of high Ca2+ was correlated with the development of a dominant contribution of slow phase dephosphorylation and with ATP-induced extra binding of Ca2+ binding which presumably takes place at the phosphorylation site (ECaP). Ca2+ was bound with lesser affinity to detergent-solubilized Ca2+-ATPase but with qualitatively the same characteristics as to membranous ECaP. Either Ca2+ or Mg2+ was required for dephosphorylation, also after detergent solubilization. It is concluded that ATP hydrolysis occurs by the same steps for membranous and monomeric Ca2+-ATPase and involves formation of either EMgP or ECaP as reaction intermediates, leading to biphasic kinetics, which, therefore, cannot be taken as evidence of an oligomeric function of the enzyme.  相似文献   

9.
10.
After the nucleotide binding domain in sarcoplasmic reticulum Ca2+-ATPase has been derivatized with fluorescein isothiocyanate at Lys-515, ATPase phosphorylation in the presence of a calcium gradient, with Ca2+ on the lumenal side but without Ca2+ on the cytosolic side, results in the formation of a species that exhibits exceptionally low probe fluorescence (Pick, U. (1981) FEBS Lett. 123, 131-136). We show here that, as long as the free calcium concentration on the cytosolic side is kept in the nanomolar range, this low fluorescence species is remarkably stable, even when the calcium gradient is subsequently dissipated by ionophore. This species is a Ca2+-free phosphorylated species. The kinetics of Ca2+ binding to it indicates that its transport sites are exposed to the cytosolic side of the membrane and retain a high affinity for Ca2+. Thus, in the ATPase catalytic cycle, an intrinsically transient phosphorylated species with transport sites occupied but not yet occluded must also have been stabilized by fluorescein isothiocyanate (FITC), possibly mimicking ADP. The low fluorescence mainly results from a change in FITC absorption. The Ca2+-free low fluorescence FITC-ATPase species remains stable after addition of thapsigargin in the absence or presence of decavanadate, or after solubilization with dodecylmaltoside. The remarkable stability of this phosphoenzyme species and the changes in FITC spectroscopic properties are discussed in terms of a putative FITC-mediated link between the nucleotide binding domain and the phosphorylation domain in Ca2+-ATPase, and the possible formation of a transition state-like conformation with a compact cytosolic head. These findings might open a path toward structural characterization of a stable phosphorylated form of Ca2+-ATPase for the first time, and thus to further insights into the pump's mechanism.  相似文献   

11.
The kinetics and extent of the fluorescence change induced by Ca2+ interaction with the Ca2+-ATPase from sarcoplasmic reticulum have been compared by stopped flow fluorimetry for three preparations: sarcoplasmic reticulum; purified ATPase in membrane vesicles; and solubilized, delipidated ATPase. The kinetics of Ca2+ release and binding for both purified preparations could be described by a single exponential as has been observed for sarcoplasmic reticulum. The rate and extent of the fluorescence change for the solubilized and membrane-associated preparations are shown to be quite similar to those of the sarcoplasmic reticulum. From these results, it is concluded that all of the Ca2+-induced fluoescence change in sarcoplasmic reticulum originates from the Ca2+-ATPase. In addition, since the change in fluorescence is probably result of a conformational change in the ATPase during the Ca2+ pumping cycle, the results provide additional evidence that monomeric Ca2+-ATPase may be capable of Ca2+ transport since the delipidated preparation is monomeric under the conditions used for these experiments. Finally, it is concluded that phospholipid bilayer is not essential for this conformational change.  相似文献   

12.
In recent years, expression of rabbit sarcoplasmic reticulum (SR) Ca2+-ATPase in heterologous systems has been a widely used strategy to study altered enzymes generated by site-directed mutagenesis. Various eukaryotic expression systems have been tested, all of them yielding comparable amounts of recombinant protein. However, the relatively low yield of recombinant protein obtained so far suggests that novel purification techniques will be required to allow further characterization of this enzyme based on direct ligand-binding measurements.  相似文献   

13.
Myotoxin a is a muscle-damaging toxin isolated from the venom of Crotalus viridis viridis. Its interaction with the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles purified from rabbit skeletal muscle was investigated. Myotoxin a inhibited Ca2+ loading and stimulated Ca2+-dependent ATPase without affecting unidirectional Ca2+ efflux. Its action was dose, time, and temperature dependent. Myotoxin a partially blocked the binding of specific anti-(rabbit SR Ca2+-ATPase) antibodies. It is concluded that myotoxin a attaches to the SR Ca2+-ATPase and uncouples Ca2+ uptake from Ca2+-dependent ATP hydrolysis. Myotoxin a also prevented the formation of decavanadate-induced two-dimensional crystalline arrays of the SR Ca2+-ATPase.  相似文献   

14.
By the methods of spectroscopy, fluorimetry and chemical modification of tryptophane residues with N-bromsuccinimide, the sarcoplasmic reticulum of rabbit sceletal muscle was shown to contain 18 +/- 1 tryptophane residues per Ca2+-ATPase molecule, 6 of which were, probably, inside the protein globule, in its hydrophobic region, and thus unavailable for modifier, while the rest 12 +/- 1 were easily transformed to the 6-oxyindole chromophore being the main source of the intrinsic fluorescence of the enzyme. The quantum yield for the rest four residues was equal to 0.015. Four tryptophane residues are located at the distance of less than 14 A from the ATP-binding site of the enzyme. The quantum yields of fluorescence for 8 of the tryptophane residues of Ca2+-ATPase were similar and equal to 0.03.  相似文献   

15.
The fast-twitch SERCA1 isoform of the sarcoplasmic reticulum Ca(2+)-ATPase was purified to homogeneity and conjugated to peroxidase. The SERCA1 probe showed high affinity binding to the immobilized monomeric enzyme, but not crosslinker-stabilized oligomers. This suggests a preferential complex formation via homo-dimerization, rather than interactions with established oligomeric structures.  相似文献   

16.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion.  相似文献   

17.
Microcrystalline arrays of Ca2+-transporting ATPase (EC 3.6.1.38) develop in detergent-solubilized sarcoplasmic reticulum upon exposure to 10-20 mM CaCl2 at pH 6.0 for several weeks at 2 degrees C, in a crystallization medium that preserves the ATPase activity for several months. Of 48 detergents tested, optimal crystallization was obtained with Brij 36T, Brij 56, and Brij 96 at a detergent:protein weight ratio of 4:1 and with octaethylene glycol dodecyl ether at a ratio of 2:1. Similar Ca2+-induced crystalline arrays were obtained with the purified or delipidated Ca2+-ATPase of sarcoplasmic reticulum but at lower detergent:protein ratios. The crystals are stabilized by fixation with glutaraldehyde and persist even after the removal of phospholipids by treatment with phospholipases A or C and by extraction with organic solvents. The crystals obtained so far can be used only for electron microscopy, but ongoing experiments suggest that under similar conditions large ordered arrays may develop that are suitable for x-ray diffraction analysis.  相似文献   

18.
Purified preparations of Ca2+-dependent ATPase were lipid-deleted and incorporated into egg lecithin (EL) and dipalmitoyl lecithin (DPL) liposomes. The temperature dependences of the catalytic activity and of molecular mobility of the spin label (N-1-hydroxyl-2,2,6,6-tetramethyl-4-piperidyl) maleimide linked to a highly reactive SH-group in the vicinity of the active center (15-16 A) and of the fatty acid spin probe (6-doxylpalmitate) located in the protein-lipid moiety were compared. The molecular mobility of the spin label was measured by the saturation transfer method; that of the spin probe was estimated from the maximal splitting value. It was found that the catalytic activity of DPL is correlated with the molecular mobility of the hydrophobic part of ATPase, while that of EL with the segment flexibility in the vicinity of the active center.  相似文献   

19.
Favero, Terence G., David Colter, Paul F. Hooper, andJonathan J. Abramson. Hypochlorous acid inhibitsCa2+-ATPase from skeletal musclesarcoplasmic reticulum. J. Appl. Physiol. 84(2): 425-430, 1998.Hypochlorous acid(HOCl) is produced by polymorphonuclear leukocytes that migrate andadhere to endothelial cells as part of the inflammatory response totissue injury. HOCl is an extremely toxic oxidant that can react with avariety of cellular components, and concentrations reaching 200 µMhave been reported in some tissues. In this study, we show that HOClinteracts with the skeletal sarcoplasmic reticulumCa2+-adenosinetriphosphatase(ATPase), inhibiting transport function. HOCl inhibits sarcoplasmicreticulum Ca2+-ATPase activity ina concentration-dependent manner with a concentration required toinhibit ATPase activity by 50% of 170 µM and with completeinhibition of activity at 3 mM. A concomitant reduction infree sulfhydryl groups after HOCl treatment was observed, paralleling the inhibition of ATPase activity. It was also observed that HOCl inhibited the binding of the fluorescent probe fluoresceinisothiocyanate to the ATPase protein, indicating some structural damagemay have occurred. These findings suggest that the reactive oxygenspecies HOCl inhibits ATPase activity via a modification of sulfhydryl groups on the protein, supporting the contention that reactive oxygenspecies disrupt the normalCa2+-handling kinetics in musclecells.

  相似文献   

20.
The inhibition of sarcoplasmic reticulumCa2+-ATPase activity by miconazole was dependent on theconcentration of ATP and membrane protein. Half-maximal inhibition wasobserved at 12 µM miconazole when the ATP concentration was 50 µMand the membrane protein was 0.05 mg/ml. When ATP was 1 mM, a lowmicromolar concentration of miconazole activated the enzyme, whereashigher concentrations inhibited it. A qualitatively similar responsewas observed when Ca2+ transport was measured. Likewise,the half-maximal inhibition value was higher when the membraneconcentration was raised. Phosphorylation studies carried out aftersample preequilibration in different experimental settings shed lighton key partial reactions such as Ca2+ binding and ATPphosphorylation. The miconazole effect on Ca2+-ATPaseactivity can be attributed to stabilization of theCa2+-free enzyme conformation giving rise to a decrease inthe rate of the Ca2+ binding transition. The phosphoryltransfer reaction was not affected by miconazole.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号