首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Production of recombinant proteins in plant cell or organ cultures and their secretion into the plant cell culture medium simplify the purification procedure and increase protein yield. In this study, the sweet-tasting protein thaumatin I was expressed and successfully secreted from tobacco hairy root cultures. The presence of an ER signal peptide appears to be crucial for the secretion of thaumatin: without an ER signal peptide, no thaumatin was detectable in the spent medium, whereas inclusion of the ER signal peptide calreticulin fused to the N terminus of thaumatin led to the secretion of thaumatin into the spent medium of hairy root cultures at concentrations of up to 0.21 mg/L. Extracellular thaumatin levels reached a maximum after 30 days (stationary phase) and the subsequent decline was linked to the rapid increase of proteases in the medium. Significant amounts of thaumatin were trapped in the apoplastic space of the root cells. The addition of polyvinylpyrrolidone and sodium chloride into the culture medium led to an increase of extracellular thaumatin amounts up to 1.4 and 2.63 mg/L, respectively. Thaumatin production compares well with yields from other transgenic plants, so that tobacco hairy roots can be considered an alternative production platform of thaumatin.  相似文献   

2.
Many plant gums, such as gum arabic, contain hydroxyproline-rich glycoproteins (HRGPs), which are also abundant components of the plant cell extracellular matrix. Here we expressed in transgenic BY2 Nicotiana tabacum (tobacco) cells, a synthetic gene encoding a novel HRGP-based gum, designated gum arabic-8 or (GA)(8). (GA)(8) encoded eight repeats of the consensus polypeptide sequence of gum arabic glycoprotein (GAGP): Gly-Pro-His-Ser-Pro-Pro-Pro-Pro-Leu-Ser-Pro-Ser-Pro-Thr-Pro-Thr-Pro-Pro-Leu, in which most of the Pro residues were posttranslationally modified to hydroxyproline (Hyp). (GA)(8) was expressed as a green fluorescent protein (GFP) fusion protein targeted to the culture medium, (GA)(8)GFP. The culture of the transgenic cells in a 5-L bioreactor showed that the production of (GA)(8)GFP was cell growth-associated. The extracellular yield of (GA)(8)GFP was 116.8 mg/L after 14 days of culture and accounted for 87% of the total fusion protein expressed. (GA)(8)GFP was purified from the culture medium by a combination of hydrophobic interaction, gel permeation, and reversed phase chromatography. Biochemical characterization indicated that the amino acid composition of the (GA)(8) module, after removal of GFP by proteolysis, was virtually identical to that of predicted by the GAGP consensus sequence and that carbohydrate, which occurred as arabinogalactan polysaccharides and small oligoarabinosides O-linked through the Hyp residues, accounted for 84% of the molecules' dry weight. Functional assays showed that (GA)(8) exhibited low viscosity in aqueous solution similar to native GAGP. However, neither GFP alone nor the (GA)(8) module could emulsify orange oil. However, the fusion protein (GA)(8)GFP possessed 1.28-fold better emulsification properties than native GAGP. This work demonstrates the feasibility and potential of a synthetic gene approach to the de novo design of novel glycoprotein-based gums and emulsifiers.  相似文献   

3.
Low‐yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline‐O‐glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY‐2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of ”Ser‐Pro“ dipeptide, or (SP)32, to study cell growth and protein secretion, culture scale‐up, and establishment of perfusion cultures for continuous production. The BY‐2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32‐tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY‐2 cells cultured in a 5‐L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day?1, generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures.  相似文献   

4.
This article proposes a feeding strategy based on a kinetic model to enhance hairy roots growth. A new approach for modeling hairy root growth is used, considering that there is no nutrient limitation thanks to an appropriate feeding, and the intracellular pools are supposed to be always saturated. Thus, the model describes the specific growth rate from extracellular concentration of the major nutrients and nutrient uptakes depend on biomass growth. An optimized feeding strategy was determined thanks to the model to maintain the major nutrient levels at their optimum assuming optimal initial concentrations. The optimal feed rate is computed in open loop using kinetic model prediction or in closed loop using conductivity measurements to estimate biomass growth. Datura innoxia was chosen as the model culture system. Shake flask cultures were used to calibrate the model. Finally, cultures in bioreactor were performed to validate the model and the control laws. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
The Brassica rapa hairy root based expression platform, a turnip hairy root based expression system, is able to produce human complex glycoproteins such as the alpha—L—iduronidase (IDUA) with an activity similar to the one produced by Chinese Hamster Ovary (CHO) cells. In this article, a particular attention has been paid to the N‐ and O‐glycosylation that characterize the alpha‐L‐iduronidase produced using this hairy root based system. This analysis showed that the recombinant protein is characterized by highly homogeneous post translational profiles enabling a strong batch to batch reproducibility. Indeed, on each of the 6 N‐glycosylation sites of the IDUA, a single N‐glycan composed of a core Man3GlcNAc2 carrying one beta(1,2)‐xylose and one alpha(1,3)‐fucose epitope (M3XFGN2) was identified, highlighting the high homogeneity of the production system. Hydroxylation of proline residues and arabinosylation were identified during O‐glycosylation analysis, still with a remarkable reproducibility. This platform is thus positioned as an effective and consistent expression system for the production of human complex therapeutic proteins.  相似文献   

6.
Therapeutic proteins like human interferon alpha2 generally possess short serum half-lives due to their small size, hence rapid renal clearance, and susceptibility to serum proteases. Chemical derivatization, such as addition of polyethylene glycol (PEG) groups overcomes both problems, but at the expense of greatly decreased bioactivity. We describe a new method that yields biologically potent interferon alpha2b (IFNalpha2) in high yields and with increased serum half-life when expressed as arabinogalactan-protein (AGP) chimeras in cultured tobacco cells. Thus IFNalpha2-AGPs targeted for secretion typically gave 350-1400-fold greater secreted yields than the non-glycosylated IFNalpha2 control. The purified AGP domain itself was not immunogenic when injected into mice and only mildly so when injected as a fusion glycoprotein. Importantly, the AGP-IFNalpha2 chimeras showed up to a 13-fold increased in vivo serum half-life while the biological activity remained similar to native IFNalpha2. The use of arabinogalactan glycomodules may provide a general approach to the enhanced production of therapeutic proteins by plants.  相似文献   

7.
8.
Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant‐produced glycoproteins have N‐glycans with plant‐specific sugar residues (core β‐1,2‐xylose and α‐1,3‐fucose) and a Lewis a (Lea) epitope, i.e., Galβ(1‐3)[Fucα(1‐4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant‐specific core α‐1,3‐fucose and α‐1,4‐fucose residues in the Lea epitopes by repressing the Guanosine 5′‐diphosphate (GDP)‐D‐mannose 4,6‐dehydratase (GMD) gene, which is associated with GDP‐L‐fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus‐induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose‐free N‐glycans found in total soluble protein from GMD gene‐repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild‐type plants. A small amount of putative galactose substitution in N‐glycans from the NbGMD gene‐repressed plants was observed, similar to what has been previously reported GMD‐knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) with fucose‐deleted N‐glycans was successfully produced in NbGMD‐RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants.  相似文献   

9.
10.
A method combining fluorescence activated cell sorting (FACS) and DNA microarray assisted clone identification was developed and termed Genome‐Scale Analysis of Library Sorting (GALibSo). Genes enhancing the production of secreted heterologous proteins in Pichia pastoris were identified out of a cDNA library by cell surface display and FACS. The trends of gene enrichment during consecutive FACS rounds were monitored by DNA microarrays. In a case study a P. pastoris cDNA library was co‐expressed in a strain secreting the Fab fragment of a monoclonal antibody against human immunodeficiency virus type 1 as a model protein. Three genes were identified, increasing the relative expression level of the surface‐displayed model protein up to 45%. While one of these genes had a positive effect on three out of four tested proteins, the product specific effect of the other two suggested that the effects of the co‐expressed secretion enhancing factors are partly dependent on the protein to be produced. The microarray based monitoring of the enrichment of genes causing enhanced protein secretory capacity led to novel insights into the limitation of protein secretion. Biotechnol. Bioeng. 2010; 105: 543–555. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
The demand for recombinant proteins for medical and industrial use is expanding rapidly and plants are now recognized as an efficient, inexpensive means of production. Although the accumulation of recombinant proteins in transgenic plants can be low, we have previously demonstrated that fusions with an elastin‐like polypeptide (ELP) tag can significantly enhance the production yield of a range of different recombinant proteins in plant leaves. ELPs are biopolymers with a repeating pentapeptide sequence (VGVPG)n that are valuable for bioseparation, acting as thermally responsive tags for the non‐chromatographic purification of recombinant proteins. To determine the optimal ELP size for the accumulation of recombinant proteins and their subsequent purification, various ELP tags were fused to green fluorescent protein, interleukin‐10, erythropoietin and a single chain antibody fragment and then transiently expressed in tobacco leaves. Our results indicated that ELP tags with 30 pentapeptide repeats provided the best compromise between the positive effects of small ELP tags (n = 5–40) on recombinant protein accumulation and the beneficial effects of larger ELP tags (n = 80–160) on recombinant protein recovery during inverse transition cycling (ITC) purification. In addition, the C‐terminal orientation of ELP fusion tags produced higher levels of target proteins, relative to N‐terminal ELP fusions. Importantly, the ELP tags had no adverse effect on the receptor binding affinity of erythropoietin, demonstrating the inert nature of these tags. The use of ELP fusion tags provides an approach for enhancing the production of recombinant proteins in plants, while simultaneously assisting in their purification. Biotechnol. Bioeng. 2009;103: 562–573. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Plants encode a poorly understood superfamily of developmentally expressed cell wall hydroxyproline‐rich glycoproteins (HRGPs). One, EXTENSIN3 (EXT3) of the 168 putative HRGPs, is critical in the first steps of new wall assembly, demonstrated by broken and misplaced walls in its lethal homozygous mutant. Here we report the findings of phenotypic (not genotypic) revertants of the ext3 mutant and in‐depth analysis including microarray and qRT‐PCR (polymerase chain reaction). The aim was to identify EXT3 substitute(s), thus gaining a deeper understanding of new wall assembly. The data show differential expression in the ext3 mutant that included 61% (P ≤ 0.05) of the HRGP genes, and ability to self‐rescue by reprogramming expression. Independent revertants had reproducible expression networks, largely heritable over the four generations tested, with some genes displaying transgenerational drift towards wild‐type expression levels. Genes for nine candidate regulatory proteins as well as eight candidate HRGP building materials and/or facilitators of new wall assembly or maintenance, in the (near) absence of EXT3 expression, were identified. Seven of the HRGP fit the current model of EXT function. In conclusion, the data on phenotype comparisons and on differential expression of the genes‐of‐focus provide strong evidence that different combinations of HRGPs regulated by alternative gene expression networks, can make functioning cell walls, resulting in (apparently) normal plant growth and development. More broadly, this has implications for interpreting the cause of any mutant phenotype, assigning gene function, and genetically modifying plants for utilitarian purposes.  相似文献   

13.
14.
Diego Mndez  Stuart Marsden  Huw Lloyd 《Ibis》2019,161(4):867-877
The Andean Condor Vultur gryphus is a globally threatened and declining species. Problems of surveying Andean Condor populations using traditional survey methods are particularly acute in Bolivia, largely because only few roosts are known there. However, similar to other vulture species, Andean Condors aggregate at animal carcasses, and are individually recognizable due to unique morphological characteristics (size and shape of male crests and pattern of wing coloration). This provided us with an opportunity to use a capture‐recapture (‘sighting‐resighting’) modelling framework to estimate the size and structure of an Andean Condor population in Bolivia using photographs of individuals taken at observer‐established feeding stations. Between July and December 2014, 28 feeding stations were established in five different zones throughout the eastern Andean region of Bolivia, where perched and flying Andean Condors were photographed. Between one and 57 (mean = 20.2 ± 14.6 sd) Andean Condors were recorded visiting each feeding station and we were able to identify 456 different individuals, comprising 134 adult males, 40 sub‐adult males, 79 juvenile males, 80 adult females, 30 sub‐adult females and 93 juvenile females. Open population capture‐recapture models produced population estimates ranging from 52 ± 14 (se) individuals to 678 ± 269 individuals across the five zones, giving a total of 1388 ± 413 sd individuals, which is roughly 20% of the estimated Andean Condor global population. Future trials of this method need to consider explicitly knowledge of Andean Condor movements and home‐ranges, habitat preferences when selecting suitable sites as feeding stations, juvenile movements and other behaviours. Sighting‐resighting methods have considerable potential to increase the accuracy of surveys of Andean Condors and other bird species with unique individual morphological characteristics.  相似文献   

15.
Phospholipase A2 (PLA2) from Naja naja atra venom induced apoptotic death of human leukemia K562 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, Bcl‐2 degradation, mitochondrial translocation of Bax, and cytochrome c release were observed in PLA2‐treated cells. Moreover, PLA2 treatment increased Fas and FasL protein expression. Upon exposure to PLA2, activation of p38 MAPK (mitogen‐activated protein kinase) and JNK (c‐Jun NH2‐terminal kinase) was found in K562 cells. SB202190 (p38 MAPK inhibitor) pretreatment enhanced cytotoxic effect of PLA2 and led to prolonged JNK activation, but failed to affect PLA2‐induced upregulation of Fas and FasL protein expression. Sustained JNK activation aggravated caspase8/mitochondria‐dependent death pathway, downregulated Bcl‐2 expression and increased mitochondrial translocation of Bax. SP600125 (JNK inhibitor) abolished the cytotoxic effect of PLA2 and PLA2‐induced autocrine Fas death pathway. Transfection ASK1 siRNA and overexpression of dominant negative p38α MAPK proved that ASK1 pathway was responsible for PLA2‐induced p38 MAPK and JNK activation and p38α MAPK activation suppressed dynamically persistent JNK activation. Downregulation of FADD abolished PLA2‐induced procaspase‐8 degradation and rescued viability of PLA2‐treated cells. Taken together, our results indicate that JNK‐mediated autocrine Fas/FasL apoptotic mechanism and modulation of Bcl‐2 family proteins are involved in PLA2‐induced death of K562 cells. J. Cell. Biochem. 109: 245–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The trace fossil Zoophycos characterized by complex, three‐dimensional morphology with systematic internal structures occurs throughout the Phanerozoic marine sediments. The specimens of Zoophycos examined herein consist of a downward and helical spreite and are a product of the excretory behaviour of endobenthic detritus feeders. They are divided into two basic types: pre‐Jurassic and post‐Cretaceous types on the basis of whorls of spreiten in a single specimen. The pre‐Jurassic type has fewer than four whorls. In contrast, most of the post‐Cretaceous specimens exhibit spreite with multiple coils more than ten whorls. The abrupt increase in whorl number during the Cretaceous suggests that the sedentary lifestyle of the producer should change from a short‐term stay to long‐term or permanent occupation of the same burrow. Timing of the lifestyle change the Zoophycos producers seems to be closely related to the deep‐seaward migration of their habitats. The change in lifestyle and migration of Zoophycos‐producing animals during the Cretaceous might be attributable to the establishment of eutrophic bottom conditions in the deep sea. These changes seem to be associated with the flux of large amounts of phytodetrital food produced by phytoplankton, which experienced an explosive increase in species diversity during the Late Jurassic to the Late Cretaceous. The series of changes in lifestyle and habitat of the Zoophycos animals during the Late Mesozoic can serve as one piece of geological evidence for the ‘benthic‐pelagic coupling model’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号