共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
T. Zh. Hu 《Russian Journal of Plant Physiology》2008,55(4):530-537
OsLEA3 is a late embryogenesis abundant group 3 protein. The OsLEA3 gene located on chromosome 5 of rice (Oryza sativa L.) includes one intron and two exons and encodes a protein of 200 amino acid residues. Expression analysis revealed that OsLEA3 was induced by water deficit and salt stress. Overexpression of the OsLEA3 gene in the transgenic rice plants allowed us to test the role of the OsLEA3 protein in stress tolerance. The accumulation of the OsLEA3 protein in the vegetative tissues of transgenic rice plants enhanced their tolerance to water deficit and salt stress. These results demonstrate a role for the OsLEA3 protein in stress protection and suggest the potential of the OsLEA3 gene for genetic engineering of stress tolerance. 相似文献
5.
6.
Many environmental stimuli, including light, biotic and abiotic stress factors, induce changes in cellular Ca(2+) concentrations in plants. Such Ca(2+) signatures are perceived by sensor molecules such as calcineurin B-like (CBL) proteins. AtCBL1, a member of the CBL family which is highly inducible by multiple stress signals, is known to function in the salt stress signal transduction pathway and to positively regulate the plant tolerance to salt. To shed light into the molecular mechanisms of the salt stress response mediated by AtCBL1, a two-dimensional DIGE proteomic approach was applied to identify the differentially expressed proteins in Arabidopsis wild-type and cbl1 null mutant plants in response to salt stress. Seventy-three spots were found altered in expression by least 1.2-fold and 50 proteins were identified by MALDI-TOF/TOF-MS, including some well-known and novel salt-responsive proteins. These proteins function in various processes, such as signal transduction, ROS scavenging, energy production, carbon fixation, metabolism, mRNA processing, protein processing and structural stability. Receptor for activated C kinase 1C (RACK1C, spot 715), a WD40 repeat protein, was up-regulated in the cbl1 null mutant, and two rack1c mutant lines showed decreased tolerance to salt stress, suggesting that RACK1C plays a role in salt stress resistance. In conclusion, our work demonstrated the advantages of the proteomic approach in studies of plant biology and identified candidate proteins in CBL1-mediated salt stress signaling network. 相似文献
7.
Yasuhito Sakuraba ;So-Yon Park ;Ye-Sol Kim ;Seung-Hyun Wang ;Soo-Cheul Yoo ;Stefan Hortensteiner ;Nam-Chon Paek 《植物生理与分子生物学学报》2014,(8):1288-1302
Chlorophyll (Chl) degradation causes leaf yellowing during senescence or under stress conditions. For Chl breakdown, STAY-GREEN1 (SGR1) interacts with Chl catabolic enzymes (CCEs) and light-harvesting complex II (LHCII) at the thylakoid membrane, possibly to allow metabolic channeling of potentially phototoxic Chl breakdown intermediates. Among these Chl catabolic components, SGR1 acts as a key regulator of leaf yellowing. In addition to SGR1 (At4g22920), the Arabidopsis thaliana genome contains an additional homolog, SGR2 (At4g11910), whose biological function remains elusive. Under senescence-inducing conditions, SGR2 expression is highly up-regulated, similarly to SGR1 expression. Here we show that SGR2 function counteracts SGR1 activity in leaf Chl degradation; SGR2-overexpressing plants stayed green and the sgr2-1 knockout mutant exhibited early leaf yellowing under age-, dark-, and stress-induced senescence conditions. Like SGR1, SGR2 interacted with LHCII but, in contrast to SGR1, SGR2 interactions with CCEs were very limited. Furthermore, SGR1 and SGR2 formed homo- or heterodimers, strongly suggesting a role for SGR2 in negatively regulat- ing Chl degradation by possibly interfering with the proposed CCE-recruiting function of SGR1. Our data indicate an antagonistic evolution of the functions of SGR1 and SGR2 in Arabidopsis to balance Chl catabolism in chloroplasts with the dismantling and remobilizing of other cellular components in senescing leaf cells. 相似文献
8.
盐胁迫对植物叶绿素荧光影响的研究进展 总被引:2,自引:0,他引:2
盐胁迫是制约植物生长发育的主要非生物胁迫之一, 研究植物的耐盐机理对开发和有效利用盐碱地有重要的意义。叶绿素荧光动力技术作为研究植物光合生理状况及植物与逆境胁迫关系的理想方法, 可表明外界胁迫环境对植物光合器官的伤害程度。通过总结性阐述盐胁迫对植物叶绿素荧光的影响, 分别从盐分类型、植物类型、光照强度以及盐旱交互作用等方面分析了植物叶绿素荧光对盐胁迫的响应, 进而反映盐胁迫对植物光合能力的影响程度, 并提出增强植物抗盐性的途径, 包括施加外源物质、利用转基因技术、真菌的协同效应和培育耐盐品种。最后对叶绿素荧光动力技术在抗盐胁迫的运用前景进行了展望, 提出了当前研究需要解决的问题, 旨在为提高植物耐盐能力提供一定的理论依据。 相似文献
9.
10.
Mariam Awlia Nouf Alshareef Noha Saber Arthur Korte Helena Oakey Klára Panzarová Martin Trtílek Sónia Negrão Mark Tester Magdalena M. Julkowska 《The Plant journal : for cell and molecular biology》2021,107(2):544-563
Salt stress decreases plant growth prior to significant ion accumulation in the shoot. However, the processes underlying this rapid reduction in growth are still unknown. To understand the changes in salt stress responses through time and at multiple physiological levels, examining different plant processes within a single set-up is required. Recent advances in phenotyping has allowed the image-based estimation of plant growth, morphology, colour and photosynthetic activity. In this study, we examined the salt stress-induced responses of 191 Arabidopsis accessions from 1 h to 7 days after treatment using high-throughput phenotyping. Multivariate analyses and machine learning algorithms identified that quantum yield measured in the light-adapted state (Fv′/Fm′) greatly affected growth maintenance in the early phase of salt stress, whereas the maximum quantum yield (QYmax) was crucial at a later stage. In addition, our genome-wide association study (GWAS) identified 770 loci that were specific to salt stress, in which two loci associated with QYmax and Fv′/Fm′ were selected for validation using T-DNA insertion lines. We characterized an unknown protein kinase found in the QYmax locus that reduced photosynthetic efficiency and growth maintenance under salt stress. Understanding the molecular context of the candidate genes identified will provide valuable insights into the early plant responses to salt stress. Furthermore, our work incorporates high-throughput phenotyping, multivariate analyses and GWAS, uncovering details of temporal stress responses and identifying associations across different traits and time points, which are likely to constitute the genetic components of salinity tolerance. 相似文献
11.
12.
Hui-hui Zhang Nan Xu Xuye Wu Junrui Wang Songliang Ma 《Journal of Plant Interactions》2018,13(1):506-513
Sorghum variety Longza 17 was used as the experimental organism in a study of the effects of different types of sodium salt (two neutral salts, NaCl and Na2SO4; and two alkaline salts, NaHCO3 and Na2CO3), at an equivalent Na+ concentration (100?mmol·L?1) on leaf growth parameters and PSII and PSI function by using the Fast Chlorophyll Fluorescence Induction Dynamics technique and 820?nm light reflectance curves. The results showed that at Na+ concentration of 100?mmol·L?1, different types of sodium salt stress significantly inhibited the growth of sorghum plants. Different types of sodium salt stress showed significant inhibition on the activities of PSII and PSI in sorghum leaves, the impact of different types of sodium salt on the activities of PSII and PSI in sorghum leaves was consistent, listed from greatest to least impact as Na2CO3 > NaHCO3 > Na2SO4 > NaCl. The effects of alkaline salt stress on the growth and photosynthetic properties of sorghum were greater than those under the neutral salt stress, therefore, in addition to considering the impact of Na+ concentration in the sorghum planting area, emphasis should also be given to the influence of the degree of alkalization, especially the higher alkalinity of Na2CO3. 相似文献
13.
The Arabidopsis thaliana genome has two genes (AtFC-I and AtFC-II), encoding ferrochelatase, the terminal enzyme of haem biosynthesis. The roles of the two enzymes in the synthesis of haem for different haemoproteins was investigated using reporter gene analysis. A 1.41 kb fragment from the 5' upstream region of the AtFC-II gene was fused to the luciferase gene, and then introduced into tobacco plants, followed by luciferase activity measurements. AtFC-II-LUCwas expressed in all aerial parts of the plant, and was highest in flowers, but it was not expressed in roots. It was unaffected by viral infection, and considerably reduced by wounding or oxidative stress. Similarly, a 1.76 kb region of the AtFC-I promoter was fused to the uidAgene encoding -glucuronidase. AtFC-I-GUS was expressed in all tissues of the plant, but was higher in roots and flowers than in leaves or stems. It was induced by sucrose, wounding and oxidative stress and, most markedly, by plants undergoing the hypersensitive response to TMV infection. Levels of endogenous ferrochelatase activity were increased in pea chloroplasts isolated from wounded leaves, indicating that the induction in promoter activity is likely to result in increased haem biosynthetic potential. Salicylic acid, but not methyl-jasmonate was able to replace the stress treatment in induction of AtFC-I expression, suggesting that the requirement for haem synthesis is part of the defence response. The implications of the results for the different roles of the two ferrochelatases in haem biosynthesis are discussed. 相似文献
14.
15.
本试验旨在探究100mol/L盐胁迫下根际施用褪黑素(MT)、接种近明球囊霉属AMF幼套近明球囊霉(Claroideoglomus etunicatum)及其复合处理对月季幼苗生长、叶绿素荧光参数、激素代谢及抗氧化系统的影响,以探明两者缓解月季盐胁迫的机制。结果发现,盐胁迫下月季幼苗生长受到抑制,株高、茎粗以及生物量等显著下降;施用MT可以促进AMF侵染,提高侵染率、丛枝着生率、泡囊数和侵入点数。100mol/L盐处理下,与对照(CK)处理相比,AMF+MT处理的叶绿素总量、叶绿素a/b分别增加46.2%和67.2%;叶绿素荧光参数中PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、PSⅡ实际光化学效率(φPSⅡ)、PSII有效光化学量子效率(Fv’/ Fm’)、光化学猝灭系数(qP)分别增加4.9%、51.0%、175.0%、168.7%和92.5%,NPQ的下降幅度为42.7%;此外,盐胁迫下,月季叶片中玉米素核苷(ZR)、赤霉素(GA)、生长素(IAA)含量下降,而脱落酸含量(ABA)增加,AMF+MT处理后ZR、GA、IAA分别增加146.9%、116.9%、35.7%,ABA下降21.1%;同时AMF+MT处理能够激活抗氧化酶SOD、CAT活性,降低超氧阴离子(O2-)产生速率和H2O2累积。结论认为,接种AMF、添加MT或者AMF+MT处理均可以提高叶绿素含量,保护叶绿素荧光系统,维持植物内源激素的平衡,激活SOD、CAT等抗氧化酶活性以及降低脂质过氧化和H2O2累积,以减轻盐胁迫对月季幼苗的伤害,促进月季生长,其中以AMF+MT处理下月季幼苗的抗盐性效果更佳。 相似文献
16.
17.
18.
Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana 总被引:2,自引:0,他引:2
During de-etiolation, the co-ordinated synthesis of chlorophyll and the chlorophyll a/b-binding proteins is critical to the development of functional light-harvesting complexes. To understand how this co-ordination is achieved, we have made a detailed study of the light-regulated signalling pathways mediating the expression of the HEMA1 and Lhcb genes encoding glutamyl-tRNA reductase, the first committed enzyme of 5-aminolaevulinic acid formation, and chlorophyll a/b-binding proteins, respectively. To do this, we have screened 7 photoreceptor and 12 light-signalling mutants of Arabidopsis thaliana L. for induction of HEMA1 and Lhcb expression in continuous red, far-red and blue light and following a red pulse. We have categorised these mutants into two groups. The phyA, phyB, phyAphyB, cry1, cry2, cop1, det1, poc1, eid1, and far1 mutations lead to diverse effects on the light regulation of HEMA1, but affect Lhcb expression to a similar degree. The hy1, hy2, hy5, fin219, fhy1, fhy3, spa1, ndpk2, and pat1 mutants also affect light regulation of both HEMA1 and Lhcb expression, but with differences in the relative magnitude of the two responses. The fhy1 and fhy3 mutants show the most significant differences in light regulation between the two genes, with both showing a strong inhibition of HEMA1 expression under continuous red light. These results demonstrate that co-ordinated regulation of HEMA1 and Lhcb is largely achieved through parallel light regulation mediated by shared phytochrome- and cryptochrome-signalling pathways. However, glutamyl-tRNA reductase is also required for the synthesis of other tetrapyrroles and this dual role may account for the observed differences in these light-signalling pathways. 相似文献
19.
20.
Victoriano Meco Isabel Egea Irene Albaladejo Juan F. Campos Belen Morales Ana Ortíz‐Atienza Carmen Capel Trinidad Angosto María C. Bolarín Francisco B. Flores 《The Annals of applied biology》2019,174(2):166-178
Pollination and therefore fruit set in tomato (Solanum lycopersicum) is very sensitive to temperature. Parthenocarpy can be a very useful trait in tomato breeding in sustainable agriculture faced with global warming. Within a collection of Moneymaker tomato mutants a monogenic and recessive mutant with high fruit number was identified in heat stress conditions and named high fruit set under stress (hfs). No morphological alterations in vegetative and reproductive organs were observed except the bigger size of ovary. hfs is parthenocarpic, pollination not being required for fruit set, although this trait was not absolute since it produced some under‐seeded fruit. When plants were grown under extreme temperatures (higher than 35°C), hfs exhibits higher fruit yield than wild‐type (WT) due to increased fruit number. Another very interesting characteristic of hfs is its improved fruit quality under heat stress, exhibiting a better sweetness/acidity balance than WT. Interestingly, hfs was also tolerant to the combination of heat and salt stress, and the positive effect on production was due to both components of yield, fruit number and fruit weight. The generation of mostly seedless fruit and the high productivity and fruit quality under extreme temperatures make hfs a very interesting mutant to obtain new breeding high‐yield lines in adverse environmental conditions. 相似文献