首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self‐degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.  相似文献   

3.
4.
5.
Homologous recombination (HR) of nuclear DNA occurs within the context of a highly complex chromatin structure. Despite extensive studies of HR in diverse organisms, mechanisms regulating HR within the chromatin context remain poorly elucidated. Here we investigate the role and interplay of the histone chaperones NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) and NAP1‐RELATED PROTEIN (NRP) and the ATP‐dependent chromatin‐remodeling factor INOSITOL AUXOTROPHY80 (INO80) in regulating somatic HR in Arabidopsis thaliana. We show that simultaneous knockout of the four AtNAP1 genes and the two NRP genes in the sextuple mutant m123456‐1 barely affects normal plant growth and development. Interestingly, compared with the respective AtNAP1 (m123‐1 and m1234‐1) or NRP (m56‐1) loss‐of‐function mutants, the sextuple mutant m123456‐1 displays an enhanced plant hypersensitivity to UV or bleomycin treatments. Using HR reporter constructs, we show that AtNAP1 and NRP act in parallel to synergistically promote somatic HR. Distinctively, the AtINO80 loss‐of‐function mutation (atino80‐5) is epistatic to m56‐1 in plant phenotype and telomere length but hypostatic to m56‐1 in HR determinacy. Further analyses show that expression of HR machinery genes and phosphorylation of H2A.X (γ‐H2A.X) are not impaired in the mutants. Collectively, our study indicates that NRP and AtNAP1 synergistically promote HR upstream of AtINO80‐mediated chromatin remodeling after the formation of γ‐H2A.X foci during DNA damage repair.  相似文献   

6.
7.
Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double‐strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA‐TELANGIECTASIA MUTATED–SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co‐localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana.  相似文献   

8.
Developing a robust root system is crucial to plant survival and competition for soil resources. Here we report that the non‐specific phospholipase C5 (NPC5) and its derived lipid mediator diacylglycerol (DAG) mediate lateral root (LR) development during salt stress in Arabidopsis thaliana. T‐DNA knockout mutant npc5‐1 produced few to no LR under mild NaCl stress, whereas overexpression of NPC5 increased LR number. Roots of npc5‐1 contained a lower level of DAG than wild type, whereas NPC5 overexpressor exhibited an increase in DAG level. Application of DAG, but not phosphatidic acid, fully restored LR growth of npc5‐1 to that of wild type under NaCl stress. NPC5 expression was significantly induced in Arabidopsis seedlings treated with NaCl. Npc5‐1 was less responsive to auxin‐mediated root growth than the wild type. These results indicate that NPC5 mediates LR development in response to salt stress and suggest that DAG functions as a lipid mediator in the stress signalling.  相似文献   

9.
10.
The Tipin/Tim1 complex plays an important role in the S‐phase checkpoint and replication fork stability. However, the biochemical function of this complex is poorly understood. Using Xenopus laevis egg extract we show that Tipin is required for DNA replication in the presence of limiting amount of replication origins. Under these conditions the DNA replication defect correlates with decreased levels of DNA Polα on chromatin. We identified And1, a Polα chromatin‐loading factor, as new Tipin‐binding partner. We found that both Tipin and And1 promote stable binding of Polα to chromatin and that this is required for DNA replication under unchallenged conditions. Strikingly, extracts lacking Tipin and And1 also show reduced sister chromatids cohesion. These data indicate that Tipin/Tim1/And1 form a complex that links stabilization of replication fork and establishment of sister chromatid cohesion.  相似文献   

11.
Although telomere‐binding proteins constitute an essential part of telomeres, in vivo data indicating the existence of a structure similar to mammalian shelterin complex in plants are limited. Partial characterization of a number of candidate proteins has not identified true components of plant shelterin or elucidated their functional mechanisms. Telomere repeat binding (TRB) proteins from Arabidopsis thaliana bind plant telomeric repeats through a Myb domain of the telobox type in vitro, and have been shown to interact with POT1b (Protection of telomeres 1). Here we demonstrate co‐localization of TRB1 protein with telomeres in situ using fluorescence microscopy, as well as in vivo interaction using chromatin immunoprecipitation. Classification of the TRB1 protein as a component of plant telomeres is further confirmed by the observation of shortening of telomeres in knockout mutants of the trb1 gene. Moreover, TRB proteins physically interact with plant telomerase catalytic subunits. These findings integrate TRB proteins into the telomeric interactome of A. thaliana.  相似文献   

12.
13.
Secondary metabolites are involved in the plant stress response. Among these are scopolin and its active form scopoletin, which are coumarin derivatives associated with reactive oxygen species scavenging and pathogen defence. Here we show that scopolin accumulation can be induced in the root by osmotic stress and in the leaf by low‐temperature stress in Arabidopsis thaliana. A genetic screen for altered scopolin levels in A. thaliana revealed a mutant compromised in scopolin accumulation in response to stress; the lesion was present in a homologue of THO1 coding for a subunit of the THO/TREX complex. The THO/TREX complex contributes to RNA silencing, supposedly by trafficking precursors of small RNAs. Mutants defective in THO, AGO1, SDS3 and RDR6 were impaired with respect to scopolin accumulation in response to stress, suggesting a mechanism based on RNA silencing such as the trans‐acting small interfering RNA pathway, which requires THO/TREX function.  相似文献   

14.
To understand the early heat shock (HS)‐regulated cellular responses that influence the tolerance of rice plant to high environmental temperatures, two‐dimensional difference gel electrophoresis (2D‐DIGE) is performed to explore the early HS‐regulated proteome. Multiple proteins that show abundance changes after 1 and 5 min of HS treatment are identified. Of the early HS‐regulated proteins identified, the abundance of a ubiquitin‐specific protease, OsUBP21, and its Arabidopsis homolog, AtUBP13, is found to be upregulated by 5 min of HS treatment. Further, knocking the expression of OsUBP21 or AtUBP13 down or out increases the tolerance of rice and Arabidopsis plants to HS stress, suggesting that the function of these ubiquitin‐specific proteases in regulating plant HS responses is conserved between monocots and dicots. 2D‐DIGE showed a group of proteins are differentially regulated in wild‐type and ubp21 mutant after 30 min of HS treatment. Among these proteins, 11 are found to interact directly with OsUBP21; thus, they may be targets of OsUBP21. Future analyses of the roles of these OsUBP21‐interacting proteins in plant HS responses will help reveal the protein ubiquitination/deubiquitination‐regulated cellular responses induced by HS in rice.  相似文献   

15.
16.
17.
Endoplasmic reticulum (ER)‐associated degradation (ERAD) is part of the ER protein quality‐control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N‐terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N‐terminal region. These observations collectively define AtOTU1 as an OTU domain‐containing deubiquitinase involved in Arabidopsis ERAD.  相似文献   

18.
19.
Repair of the ubiquitous mutagenic lesion 7,8-dihydro-8-oxoguanine (8-oxoG) is initiated in eukaryotes by DNA glycosylases/lyases, such as yeast Ogg1, that do not share significant sequence identity with their prokaryotic counterparts, typified by Escherichia coli MutM (Fpg) protein. The unexpected presence of a functional mutM orthologue in the model plant Arabidopsis thaliana has brought into question the existence of functional OGG1 orthologues in plants. We report here the cDNA cloning, expression and functional characterization of AtOGG1, an Arabidopsis thaliana gene widely expressed in different plant tissues which encodes a 40.3 kDa protein with significant sequence identity to yeast and human Ogg1 proteins. Purified AtOgg1 enzyme specifically cleaves duplex DNA containing an 8-OxoG:C mispair, and the repair reaction proceeds through an imine intermediate characteristic of all bifunctional DNA glycosylases/lyases. Consistent with its in vitro activity, expression of AtOGG1 suppresses the mutator phenotype of an E. coli strain deficient in 8-oxoG repair. Our results suggest that AtOgg1 is an structural and functional homologue of Ogg1 and establish the presence of two distinct 8-oxoG repair enzymes in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号