首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
Growth and decomposition of Sphagnum controls turnover of a large global store of soil organic carbon. We investigated variation in morphological and physiological traits of Sphagnum shoots, and related this variation to canopy variables relevant to peatland carbon cycling. We sampled Sphagnum along a bog plateau‐swamp forest gradient and measured a suite of shoot traits and canopy variables. Major axes of variation were identified using principal component analysis and correlated with canopy variables such as growth, biomass and decomposition. We also examined scaling of shoot traits with one another and with canopy variables. Two distinct tradeoffs in shoot traits emerged. From dry to wet habitats, individual metabolic rates and capitulum size increased while numerical density decreased, leading to faster growth and elongation on an individual basis. From treed to open habitats, photosynthetic efficiency decreased and photosynthetic biomass increased, driving faster growth on an area basis and slower litter mass loss. The tradeoffs identified have important implications for peatlands undergoing climate‐related changes in water and light availability. Sphagnum trait comparisons, combined with scaling analyses, offer a promising approach to understanding and predicting the effects of environmental change on peatland carbon cycling.  相似文献   

3.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   

4.
5.
Plants adopt a variety of life history strategies to succeed in the Earth's diverse environments. Using functional traits which are defined as “morphological, biochemical, physiological, or phonological” characteristics measurable at the individual level, plants are classified according to their species’ adaptative strategies, more than their taxonomy, from fast growing plant species to slower‐growing conservative species. These different strategies probably influence the input and output of carbon (C)‐resources, from the assimilation of carbon by photosynthesis to its release in the rhizosphere soil via root exudation. However, while root exudation was known to mediate plant‐microbe interactions in the rhizosphere, it was not used as functional trait until recently. Here, we assess whether root exudate levels are useful plant functional traits in the classification of plant nutrient‐use strategies and classical trait syndromes? For this purpose, we conducted an experiment with six grass species representing along a gradient of plant resource‐use strategies, from conservative species, characterized by low biomass nitrogen (N) concentrations and a long lifespans, to exploitative species, characterized by high rates of photosynthesis and rapid rates of N acquisition. Leaf and root traits were measured for each grass and root exudate rate for each planted soil sample. Classical trait syndromes in plant ecology were found for leaf and root traits, with negative relationships observed between specific leaf area and leaf dry matter content or between specific root length and root dry matter content. However, a new root trait syndrome was also found with root exudation levels correlating with plant resource‐use strategy patterns, specifically, between root exudation rate and root dry matter content. We therefore propose root exudation rate can be used as a key functional trait in plant ecology studies and plant strategy classification.  相似文献   

6.
植物功能性状被广泛地用于研究植物对环境变化的响应。糙隐子草(Cleistogenes squarrosa)是内蒙古草原重要的C4物种,其功能性状是如何对水氮环境的变化做出响应的,还不十分清楚。该文采用盆栽实验的方法,进行氮添加(0,10.5,35.0和56.0 g·m–2·a–1)和降水(自然降水和70%平均月降水量)处理,研究糙隐子草整株性状、叶形态性状和叶生理性状对氮添加和干旱的响应。结果表明,氮添加显著影响了糙隐子草的整株性状,氮、水处理及它们的交互作用显著影响了糙隐子草的叶形态性状和叶生理性状。各功能性状对氮添加的响应格局在自然降水和干旱处理下是不同的。根深、茎生物量和茎叶比在干旱条件下低和中氮添加处理中较高,而在自然降水下无明显变化;比叶面积在干旱条件下随氮添加量的增加而增加,而在自然降水下无增加趋势;自然降水下,高氮添加显著刺激了光合速率和蒸腾速率,增加了水分利用效率,而在干旱条件下氮添加对它们没有显著影响;叶片单位面积的氮含量在自然降水下随氮添加量的增加有增加趋势,而在干旱条件下显著降低。在自然降水下,氮添加主要影响糙隐子草的叶形态和生理性状,而在干旱条件下,氮添加主要影响糙隐子草的整株性状和形态性状。总之,糙隐子草的功能性状对氮添加表现出明显的响应,响应格局在不同的水分条件下不同,反映了其对氮水环境变化的弹性适应。  相似文献   

7.
  • 1 Several morphological and physiological traits may shape fitness through the same performance measure. In such cases, differentiating between a scenario of many‐to‐one mapping, where phenotypic traits independently shape fitness leading to functional redundancy, and a scenario where traits strongly covary among each other and fitness, is needed.
  • 2 A multivariate approach was used, including morphological and physiological traits related to flight ability, a crucial performance measure in flying insects, to identify independent correlates of short‐term mating success (mated versus unmated males) in the territorial damselfly Lestes viridis.
  • 3 Males with higher flight muscle mass, higher relative thorax mass, and more symmetrical hindwings, all traits presumably linked to manoeuvrability, were more likely to be mated. Unexpectedly, although relative thorax mass is often used as a proxy for flight muscle mass, both traits were selected for independently. Mated males had a higher thorax fat content than unmated males, possibly because of enhanced flight endurance.
  • 4 The finding of several independent targets of sexual selection linked to flight ability is consistent with a scenario of many‐to‐one mapping between phenotype and performance. Identifying such a scenario is important, because it may clarify situations where animals may show suboptimal values for some phenotypic traits shaping a performance measure, while still having high performance and fitness. We argue in the discussion that the functional approach of sexual selection provides a potent tool for examining unresolved issues in both sexual selection theory, as well as life‐history theory.
  相似文献   

8.
Bryophyte communities can exhibit similar structural and taxonomic diversity as vascular plant communities, just at a smaller scale. Whether the physiological diversity can be similarly diverse, and whether it can explain local abundance patterns is unknown, due to a lack of community‐wide studies of physiological traits. This study re‐analyzed data on photosynthesis‐related traits (including the nitrogen, phosphorus and chlorophyll concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies) of 27 bryophyte species in a subalpine old‐growth fir forest on the eastern Tibetan Plateau. We explored differences between taxonomic groups and hypothesized that the most abundant bryophyte species had physiological advantages relative to other subdominant species. Principal component analysis (PCA) was used to summarize the differences among species and trait values of the most abundant and other co‐occurring subdominant species. Species from the Polytrichaceae were separated out on both PCA axes, indicating their high chlorophyll concentrations and photosynthetic capacities (axis 1) and relatively high‐light requirements (axis 2). Mniaceae species also had relatively high photosynthetic capacities, but their light saturation points were low. In contrast, Racomitrium joseph‐hookeri and Lepidozia reptans, two species with a high shoot mass per area, had high‐light requirements and low nutrient and chlorophyll concentrations and photosynthetic capacities. The nutrient concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies of the most abundant bryophyte species did not differ from co‐occurring subdominant species. Our research confirms the links between the photosynthesis‐related traits and adaptation strategies of bryophytes. However, species relative abundance was not related to these traits.  相似文献   

9.
Ecological factors may contribute to reproductive isolation if differential local adaptation causes immigrant or hybrid fitness reduction. Because local adaptation results from the interaction between natural selection and adaptive traits, it is crucial to investigate both to understand ecological speciation. Previously, we used niche modelling to identify local water availability as an environmental correlate of incipient ecological speciation between two subspecies in Boechera stricta, a close relative of Arabidopsis. Here, we performed several large‐scale glasshouse experiments to investigate the divergence of various physiological, phenological and morphological traits. Although we found no significant difference in physiological traits, the Western subspecies has significantly faster growth rate, larger leaf area, less succulent leaves, delayed reproductive time and longer flowering duration. These trait differences are concordant with previous results that habitats of the Western genotypes have more consistent water availability, while Eastern genotypes inhabit locations with more ephemeral water supplies. In addition, by comparing univariate and multivariate divergence of complex traits (QST) to the genomewide distribution of SNP FST, we conclude that the aspects of phenology and morphology (but not physiology) are under divergent selection. In addition, we also identified several highly diverged traits without obvious water‐related functions.  相似文献   

10.
A major goal in evolutionary biology is to determine how phenotypic variation arises and is maintained in natural populations. Recent studies examining the morphological, physiological and behavioural differences among discrete colour morphotypes (morphs) have revealed several mechanisms that maintain discrete variation within populations, including frequency‐dependence, density‐dependence and correlational selection. For example, trade‐offs over resource allocation to morphological, physiological and behavioural traits can drive correlational selection for morph‐specific phenotypic optima. Here, we describe a ventral colour polymorphism in the wall lizard (Podarcis muralis) and test the hypothesis that morphs differ along multivariate axes defined by trade‐offs in morphological, physiological, and immunological traits. We show that ventral colour is a discrete trait and that morphs differ in body size, prevalence of infection by parasites and infection intensity. We also find that morphs differ along multivariate phenotypic axes and experience different multivariate selection pressures. Our results suggest that multivariate selection pressures may favour alternative optimal morph‐specific phenotypes in P. muralis.  相似文献   

11.
《Plant Ecology & Diversity》2013,6(2-3):139-151
Background: There is an increasing consensus that ecosystem processes are governed by functional identity and trait variation rather than species richness. Despite its importance, the relative effect of relevant functional traits for carbon storage has remained mostly untested in different bioclimatic regions.

Aims: In this study, different components of functional diversity such as community-weighted means of trait values (CWM), functional trait diversity (Rao’s quadratic diversity), functional richness (FRi), functional evenness (FEv) and functional divergence (FDiv) were used to associate carbon content of above-ground biomass, litter and soil in four bioclimatic regions including warm and cold-steppe, semi-steppe rangelands and oak dry forest in the south-west of Iran.

Methods: Several key important traits highly associated with carbon storage including specific leaf area (SLA), height (H), leaf dry matter content, leaf nitrogen and phosphorus content (LNC and LPC), leaf longevity, wood specific gravity and life form were determined to quantify single and multiple traits that contribute to different components of plant functional diversity.

Results: The results showed that CWM of H, Chamaephyte life form, LNC and LPC were among the most important aspects of functional diversity that positively predicted carbon storage in above-ground biomass and soil. We also observed the negative association of carbon storage with FEv of LNC, Rao of LNC and FEv of multiple traits in the rangelands and the negative association of carbon storage with FDiv of SLA in the forest.

Conclusions: Our results indicate that different components of functional diversity are essential for a mechanistic understanding of the role of plant diversity for carbon storage. The negative associations between FDiv and FEv and carbon storage do not provide support for the complementarity niche hypothesis. Our results suggest that in the more functionally diverse ecosystems dominated by functionally important species with key traits, the so-called functional identity does indeed promote carbon storage, at least in these semi-arid ecosystems.  相似文献   

12.
Global patterns of intraspecific leaf trait responses to elevation   总被引:1,自引:0,他引:1  
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta‐analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho‐ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross‐species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.  相似文献   

13.
For speciose, but poorly known groups, such as terrestrial arthropods, functional traits present a potential avenue to assist in predicting responses to environmental change. Species turnover is common along environmental gradients, but it is unclear how this is reflected in species traits. Community‐level change in arthropod traits, other than body size, has rarely been explored across spatial scales comparable to those examined here. We hypothesized that the composition and morphological traits of spider assemblages would differ across a gradient of climate and habitat structure. We examined foliage‐living spider assemblages associated with Themeda triandra grasslands along a 900 km climatic gradient in south‐eastern Australia. We used sweep‐netting to collect T. triandra‐associated spiders and counted juveniles and identified adults. We also measured morphological traits of adult spiders and noted their hunting mode. Associations with measures of habitat structure were less consistent than relationships with climate. Both juvenile and adult spiders were more abundant in warmer sites, although species richness was not affected by temperature. We found distinct turnover in species composition along the climatic gradient, with hunting spiders, particularly crab spiders (Thomisidae), making up a greater proportion of assemblages in warmer climates. A range of traits of spiders correlated with the climatic gradient. For example, larger spider species and species that were active hunters were more common in warmer climates. Changes in morphological traits across species, rather than within species drove the morphology‐climate relationship. Strong climate‐trait correlations suggest that it may be possible to predict changes in functional traits of assemblages in response to anthropogenic disturbances such as climate change.  相似文献   

14.
Secondary sexual traits that are condition‐dependent are expected to reveal the physiological state and/or genetic quality of individuals, and therefore, should more often be found to be under sexual selection than (1) secondary sexual traits not currently condition‐dependent, and (2) nonsecondary sexual traits. In the present study, we contrasted the degree of condition dependence in three morphological traits of male Drosophila bipectinata: two secondary sexual traits (distinct components of the sex comb), one of which significantly predicts mating success in nature (segment 2), whereas the other does not (segment 1), and a nonsecondary sexual trait (sternopleural bristle number). As predicted, comb segment 2 decreased significantly in size, in response to increasing temperature during development, whereas comb segment 1 and sternopleural bristle number either did not change significantly, or increased with increasing temperature. These results support the hypothesis that condition‐dependence, inferred from stress‐induced reductions in trait expression, engenders a trait to sexual selection. Small‐combed genotypes did not exhibit disproportionate reductions in larva‐to‐adult survivorship and adult body size compared to large‐combed genotypes, suggesting that comb size does not reveal genotypic quality, at least as revealed by sensitivity in body size and juvenile survivorship to thermal stress. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 566–574.  相似文献   

15.
Reproductive timing is a critical life‐history event that could influence the (co)variation of traits developing later in ontogeny by regulating exposure to seasonally variable factors. In a field experiment with Arabidopsis thaliana, we explore whether allelic variation at a flowering‐time gene of major effect (FRIGIDA) affects (co)variation of floral traits by regulating exposure to photoperiod, temperature, and moisture levels. We detect a positive latitudinal cline in floral organ size among plants with putatively functional FRI alleles. Statistically controlling for bolting day removes the cline, suggesting that seasonal abiotic variation affects floral morphology. Both photoperiod and precipitation at bolting correlate positively with the length of petals, stamens, and pistils. Additionally, floral (co)variances differ significantly across FRI backgrounds, such that the sign of some floral‐trait correlations reverses. Subsequent experimental manipulations of photoperiod and water availability demonstrate direct effects of these abiotic factors on floral traits. In sum, these results highlight how the timing of life‐history events can affect the expression of traits developing later in ontogeny, and provide some of the first empirical evidence for the effects of major genes on evolutionary potential.  相似文献   

16.
With the extensive spread of invasive species throughout North America and Europe there is an urgent need to better understand the morphological and physiological characteristics of successful invasive plants and the evolutionary mechanisms that allow introduced species to become invasive. Most ecological studies have focused on morphological differences and changes in community dynamics, and physiological studies have typically explored the differences between native and invasive species. In this study, 15 different genotypes of Phalaris arundinacea from both its native (European) and invasive (North American) range were grown in a common garden experiment to monitor the physiological differences between native and invasive genotypes. Here we present data that suggests high variability exists in the physiological traits among genotypes of P. arundinacea, yet genotypes from the native range are not necessarily physiologically inferior to the hybridized invasive genotypes. Previous work has shown that multiple introductions of P. arundinacea from various European locations to the United States resulted in numerous hybridization events, yielding more genetic variability and phenotypic plasticity in the invasive range. Of the genotypes studied, both morphological and physiological traits of genotypes with French origin were significantly different from the plants from the Czech Republic, North Carolina, and Vermont. The lack of clear differences between native and invasive genotypes indicates that physiological traits may be highly conserved in P. arundinacea and enhanced photosynthetic rates are not indicative of successful invasive genotypes. Instead, morphological traits and defensive secondary compound metabolism may play a more important role in the success of P. arundinacea within its invasive range, and patterns of genetic variation in physiological traits between invasive and native range may be more important than the mean traits of each region when explaining reed canarygrass’ invasive potential in North America.  相似文献   

17.
Adaptive‐trait correlations in plant ecology are often calculated among species, but in order to develop and characterize plant materials of target species for restoration, intraspecific comparisons are of greatest relevance. Elymus elymoides (Raf.) Swezey (bottlebrush squirreltail) is an important component of sagebrush‐steppe communities in the northern Intermountain West, United States. We evaluated 32 accessions of E. elymoides subspecies C, a newly recognized unnamed taxon, in the field and greenhouse. Our objectives were to assess genetic diversity for putatively adaptive traits, to elucidate biological relationships among biomass, morphological, and phenological traits through correlation analysis, and to gather evidence suggesting whether these traits might be truly adaptive, that is, related to collection‐site variables. We observed a positive correlation (r = 0.73;p < 0.01) between greenhouse shoot and root biomass among accessions, suggesting that shoot and root biomass are not in an inherent trade‐off relationship across accessions. In addition, accessions with higher greenhouse shoot biomass possessed lower specific leaf area (r = ?0.43;p < 0.05) and lower specific root length (r = ?0.47,p < 0.05). Correlations between greenhouse and field‐measured productivity traits were not significant (p > 0.05), indicating seedling performance is not predictive of mature‐plant performance. Elevation was the collection‐site variable most closely correlated with plant‐measured traits, particularly phenological dates, whereas average annual precipitation was the least significant variable. Therefore, elevation may be used as an easily applied metric to match subspecies C plant material to restoration site in the northern Intermountain West.  相似文献   

18.
Scientists do not know precisely how severe will be the impact of climate change on species. Evidence suggests that for some species, their future distributions might be jeopardized by local extinctions and drought‐induced tree mortality. Thus, we require models capable of estimating drought tolerance across many species. We can approach this goal by assessing functional traits. The trait osmotic potential at full turgor, πO, is potentially a good drought indicator; however, few studies address its importance as a drought‐tolerance predictor and it is difficult to measure in the field with accuracy. In this work, we aim to answer the questions: which drought traits correlate with πO?; do morpho‐anatomical traits correlate with πO?; and which trees and shrubs are more (or less) vulnerable to drought? To achieve this aim, we assessed physiological and morpho‐anatomical traits for 14 native species from New Zealand forests. We included leaf‐ and wood‐related traits, πO, water potential and stomatal conductance. We examined how these traits correlate with πO and sought to generate models to predict πO as a function of other traits. We tested 33 different models and evaluated them using Akaike's information criterion. Unfortunately, none of the morpho‐anatomical traits correlated well with πO. Instead, water potential correlated most strongly with πO. None of the models using only morpho‐anatomical traits produced plausible results. The model with the best predictive performance incorporated the effects of both morpho‐anatomical and physiological traits: water potential and wood saturated water content. Of the species analysed, and based on their πO response, Lophozonia menziesii was considered the most vulnerable to drought stress, whereas Plagianthus regius was the least vulnerable. Our findings imply that it is potentially valuable to keep exploring the use of πO as a drought indicator and that the effort required to measure some physiological traits, such as water potential, may be essential to consider plant drought responses and to predict πO.  相似文献   

19.
Phenotypes are the target of selection and affect the ability of organisms to persist in variable environments. Phenotypes can be influenced directly by genes and/or by phenotypic plasticity. The amphibian‐killing fungus Batrachochytrium dendrobatidis (Bd) has a global distribution, unusually broad host range, and high genetic diversity. Phenotypic plasticity may be an important process that allows this pathogen to infect hundreds of species in diverse environments. We quantified phenotypic variation of nine Bd genotypes from two Bd lineages (Global Pandemic Lineage [GPL] and Brazil) and a hybrid (GPL‐Brazil) grown at three temperatures (12, 18 and 24°C). We measured five functional traits including two morphological traits (zoospore and zoosporangium sizes) and three life history traits (carrying capacity, time to fastest growth and exponential growth rate) in a phylogenetic framework. Temperature caused highly plastic responses within each genotype, with all Bd genotypes showing phenotypic plasticity in at least three traits. Among genotypes, Bd generally showed the same direction of plastic response to temperature: larger zoosporangia, higher carrying capacity, longer time to fastest growth and slower exponential growth at lower temperatures. The exception was zoospore size, which was highly variable. Our findings indicate that Bd genotypes have evolved novel phenotypes through plastic responses to temperature over very short timescales. High phenotypic variability likely extends to other traits and may facilitate the large host range and rapid spread of Bd.  相似文献   

20.
The shift from egg laying to live‐bearing is one of the most well‐studied transitions in evolutionary biology. Few studies, however, have assessed the effect of this transition on morphological evolution. Here, we evaluated the effect of reproductive mode on the morphological evolution of 10 traits, among 108 species of phrynosomatid lizards. We assess whether the requirement for passing shelled eggs through the pelvic girdle has led to morphological constraints in oviparous species and whether long gestation times in viviparous species have led to constraints in locomotor morphology. We fit models to the data that vary both in their tempo (strength and rate of selection) and mode of evolution (Brownian or Ornstein‐Uhlenbeck) and estimates of trait optima. We found that most traits are best fit by a generalized multipeak OU model, suggesting differing trait optima for viviparous vs. oviparous species. Additionally, rates (σ2) of both pelvic girdle and forelimb trait evolution varied with parity; viviparous species had higher rates. Hindlimb traits, however, exhibited no difference in σ2 between parity modes. In a functional context, our results suggest that the passage of shelled eggs constrains the morphology of the pelvic girdle, but we found no evidence of morphological constraint of the locomotor apparatus in viviparous species. Our results are consistent with recent lineage diversification analyses, leading to the conclusion that transitions to viviparity increase both lineage and morphological diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号