首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The CRISPR/Cas9 system is a rapid, simple, and often extremely efficient gene editing method. This method has been used in a variety of organisms and cell types over the past several years. However, using this technology for generating gene-edited animals involves a number of obstacles. One such obstacle is mosaicism, which is common in founder animals. This is especially the case when the CRISPR/Cas9 system is used in embryos. Here we review the pros and cons of mosaic mutations of gene-edited animals caused by using the CRISPR/Cas9 system in embryos. Furthermore, we will discuss the mechanisms underlying mosaic mutations resulting from the CRISPR/Cas9 system, as well as the possible strategies for reducing mosaicism. By developing ways to overcome mosaic mutations when using CRISPR/Cas9, genotyping for germline gene disruptions should become more reliable. This achievement will pave the way for using the CRISPR technology in the research and clinical applications where mosaicism is an issue.  相似文献   

3.
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium‐mediated transformation to 5–6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9‐mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9‐mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.  相似文献   

4.
幸宇云  杨强  任军 《遗传》2016,38(3):217-226
CRISPR(Clustered regularly interspaced short palindromic repeats)/Cas(CRISPR associated proteins)是在细菌和古细菌中发现的一种用来抵御病毒或质粒入侵的获得性免疫系统.目前已发现的CRISPR/Cas系统包括Ⅰ,Ⅱ和Ⅲ型,其中Ⅱ型系统的组成较简单,由其改造成的CRISPR/Cas9技术已成为一种高效的基因组编辑工具.自2013年CRISPR/Cas9技术成功用于哺乳动物基因组定点编辑以来,应用该技术进行基因组编辑的报道呈现出爆发式的增长.农业动物不仅是重要的经济动物,也是人类疾病和生物医药研究的重要模式动物.本文综述了CRISPR/Cas9技术在农业动物中的研究和应用进展,简述了该技术的脱靶效应及减少脱靶的主要方法,并展望了该技术的应用前景.  相似文献   

5.
CTCF是脊椎动物关键的绝缘子蛋白,在细胞生命过程中发挥重要作用,敲除CTCF基因会导致小鼠胚胎死亡。为进一步探讨CTCF的功能,本文利用CRISPR/Cas9介导的同源重组,在内源性CTCF表达框上游敲入一个有丝分裂期降解结构域(Mitosis-special degradation domain, MD),该结构域可以带动CTCF融合蛋白在M期降解。作为对照,将MD结构域的第42位的精氨酸突变为丙氨酸,形成无降解活性的MD*,可使MD*-CTCF融合蛋白始终稳定存在。将嘌呤霉素与融合蛋白同时表达,即可利用抗生素筛选,高效地筛选到纯合克隆。利用蛋白印迹技术和免疫荧光检测3种细胞在不同细胞周期的CTCF蛋白变化情况,发现MD-CTCF细胞系CTCF蛋白含量约为野生型细胞的10%,MD*-CTCF细胞系的CTCF含量与野生型没有显著差别;通过流式细胞术观测降解CTCF对细胞的影响,发现MD-CTCF细胞系G1期明显延长。总之,利用CRISPR/Cas9技术在CTCF表达框上游高效地插入MD,首个CTCF特异性降解的人类细胞系获得成功构建。  相似文献   

6.
Functional gene analysis by using genome editing techniques is limited only in few model insects. Here, we reported an efficient and heritable gene mutagenesis analysis in an important lepidopteran pest, Spodoptera litura, using the CRISPR/Cas9 system. By using this system, we successfully obtained the homozygous S. litura strain by targeting the pheromone binding protein 3 gene (SlitPBP3), which allowed us to elucidate the role of this gene in the olfaction of the female sex pheromones. By co-injection of Cas9 mRNA and sgRNA into S. litura eggs, highly efficient chimera mutation in SlitPBP3 loci was detected both in injected eggs (39.1%) and in the resulting individual moths (87.5%). We used the mutant moths as parents to obtain the G1 offspring and the homozygous mutant strain in G2. The function of SlitPBP3 was explored by Electroantennogram (EAG) recordings with a homozygous mutant strain. The result showed that the EAG responses were significantly decreased in mutant males than in control males when treated with the major sex pheromone component (Z9,E11-14:Ac) and a minor component (Z9-14:Ac) at higher dosages. The results demonstrate that s SlitPBP3 gene plays a minor role in the perception of the female sex pheromones. Furthermore, our study provides a useful methodology with the CRISPR/Cas9 system for gene in vivo functional study, particular for lepidopteran species in which the RNAi approach is not efficient.  相似文献   

7.
The tomato PROCERA gene encodes a DELLA protein, and loss‐of‐function mutations derepress growth. We used CRISPR/Cas9 and a single guide RNAs (sgRNA) to target mutations to the PROCERA DELLA domain, and recovered several loss‐of‐function mutations and a dominant dwarf mutation that carries a deletion of one amino acid in the DELLA domain. This is the first report of a dominant dwarf PROCERA allele. This allele retains partial responsiveness to exogenously applied gibberellin. Heterozygotes show an intermediate phenotype at the seedling stage, but adult heterozygotes are as dwarfed as homozygotes.  相似文献   

8.
Insect body pigmentation and coloration are critical to adaption to the environment. To explore the mechanisms that drive pigmentation, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing system to target the ebony gene in the non-model insect Spodoptera litura. Ebony is crucial to melanin synthesis in insects. By directly injecting Cas9 messenger RNA and ebony-specific guide RNAs into S. litura embryos, we successfully induced a typical ebony-deficient phenotype of deep coloration of the puparium and induction of melanin formation during the pupal stage. Polymerase chain reaction-based genotype analysis demonstrated that various mutations had occurred at the sites targeted in ebony. Our study clearly demonstrates the function of ebony in the puparium coloration and also provides a potentially useful marker gene for functional studies in S. litura as well as other lepidopteran pests.  相似文献   

9.
10.
The discovery and application of the CRISPR/Cas9 genome editing method has greatly enhanced the ease with which transgenic manipulation can occur. We applied this technology to the mollusc, Crepidula fornicata, and have successfully created transgenic embryos expressing mCherry fused to endogenous β‐catenin. Specific integration of the fluorescent reporter was achieved by homologous recombination with a β‐catenin‐specific donor DNA containing the mCherry coding sequence. This fluorescent gene knock‐in strategy permits in vivo observations of β‐catenin expression during embryonic development and represents the first demonstration of CRISPR/Cas9‐mediated transgenesis in the Lophotrochozoa superphylum. The CRISPR/Cas9 method is a powerful and economical tool for genome modification and presents an option for analysis of gene expression in not only major model systems, but also in those more diverse species that may not have been amenable to the classic methods of transgenesis. This approach will allow one to generate transgenic lines of snails for future studies. genesis 53:237–244, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
12.
王大勇  马宁  惠洋  高旭 《遗传》2016,38(1):1-8
CRISPR/cas9基因组编辑技术因其设计简单以及操作容易,使其在基因编辑的研究中越来越受到欢迎。利用该技术,科研人员可以实现在碱基的水平对基因组进行定点修饰。CRISPR系统现已经被广泛地应用到多个物种的基因组编辑以及癌症的相关研究中。本文在最新研究进展的基础上,结合对癌症研究及基因组编辑技术的理解,对CRISPR/Cas9技术在癌症研究中的应用进行了综述。  相似文献   

13.
14.
周文龙  唐亮  成凯  刘忞之  杨燕  王伟 《生物工程学报》2017,33(12):1999-2008
谷胱甘肽(Glutathione,GSH)是具有多种生理功能的非蛋白质类巯基化合物,已广泛应用于药品、食品等行业,且市场需求量逐年增加。遗传工程育种是提高细胞内GSH含量的重要策略,但在遗传操作过程中使用到的营养缺陷型遗传标记可能会影响菌株的正常生长,且不利于高密度发酵的进行。为回复工程菌株的营养缺陷型,利用g RNA转录表达框和靶基因同源DNA片段直接共转化酵母细胞,由细胞内表达的Ⅱ型CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats(CRISPR)-Cas9)介导的基因组编辑技术将营养缺陷型GSH工程菌株W303-1b/FGP回复为原养型菌株。结果显示,与营养缺陷型菌株相比,原养型菌株生长周期缩短,且可以利用简单的合成培养基进行培养,方便菌株的大规模培养。  相似文献   

15.
李金环  寿佳  吴强 《遗传》2015,37(10):992-291
源于细菌和古菌的Ⅱ型成簇规律间隔短回文重复系统[Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9),CRISPR/Cas9]近年被改造成为基因组定点编辑的新技术。由于它具有设计简单、操作方便、费用低廉等巨大优势,给遗传操作领域带来了一场革命性的改变。本文重点介绍了CRISPR/Cas9系统在基因组DNA片段靶向编辑方面的研究和应用,主要包括DNA片段的删除、反转、重复、插入和易位,这一有效的DNA片段编辑方法为研究基因功能、调控元件、组织发育和疾病发生发展提供了有力手段。本文最后展望了Ⅱ型CRISPR/Cas9系统的应用前景和其他类型CRISPR系统的应用潜力,为开展利用基因组DNA片段靶向编辑进行基因调控和功能研究提供参考。  相似文献   

16.
CRISPR/Cas9技术是一种能够快速对基因组靶位点进行特定DNA修饰的编辑工具。该文对近年来国内外有关CRISPR/Cas9技术在改善番茄农艺性状及提高生物、非生物胁迫抗性方面的研究进展进行综述,并集中讨论了CRISPR/Cas9面临的一些问题,为该基因编辑技术在番茄的种质创新及基因功能研究方面的应用提供参考。  相似文献   

17.
Knockout of genes with CRISPR/Cas9 is a newly emerged approach to investigate functions of genes in various organisms. We demonstrate that CRISPR/Cas9 can mutate endogenous genes of the ascidian Ciona intestinalis, a splendid model for elucidating molecular mechanisms for constructing the chordate body plan. Short guide RNA (sgRNA) and Cas9 mRNA, when they are expressed in Ciona embryos by means of microinjection or electroporation of their expression vectors, introduced mutations in the target genes. The specificity of target choice by sgRNA is relatively high compared to the reports from some other organisms, and a single nucleotide mutation at the sgRNA dramatically reduced mutation efficiency at the on‐target site. CRISPR/Cas9‐mediated mutagenesis will be a powerful method to study gene functions in Ciona along with another genome editing approach using TALE nucleases.  相似文献   

18.
In recent years, the type II CRISPR system has become a widely used and robust technique to implement site‐directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single‐site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ‐aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty‐three genome‐edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19‐fold higher than that in wild‐type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.  相似文献   

19.
规律性成簇间隔的短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)的发现和工程技术对生命科学的发展带来巨大的推动作用。RNA引导的Cas(CRISPR-associated)酶已被用作操纵细胞、动物和植物基因组的工具。这加速了基础研究的步伐,并使其在临床和农业上的应用成为可能。CRISPR/Cas9对在实验系统中进行的功能基因组学的研究有重大影响。CRISPR/Cas9系统自发现以来,因其操作便捷、成本低、特异性高、可同时打靶任意数量基因等优点而被广泛应用。经过近几年研究发现,Cas9变异体(Cas12a、Cas13)有利于突破和克服CRISPR/Cas9应用中的一些限制,Cas12a极大地扩展了基因编辑靶位点的选择范围,同时其介导的多基因编辑具有明显的优势;Cas13等蛋白能特异性结合和编辑RNA,开启了转录组研究的新篇章。本文主要就CRISPR/Cas的研究背景以及Cas9、Cas12a和Cas13系统研究进展和应用进行综述,并对其应用前景和发展方向进行了展望。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号