首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speciation and biogeographical patterning in the velvet worm Opisthopatus cinctipes was examined under a null hypothesis that numerous discrete lineages are nested within the species. A total of 184 O. cinctipes specimens, together with a single specimen of each of the two congeneric point endemic sister species (O. roseus and O. herbertorum), were collected throughout the forest archipelago in the Eastern Cape, KwaZulu‐Natal and Mpumalanga provinces of South Africa. All specimens were sequenced for two partial mitochondrial DNA loci (COI and 12S rRNA), while a single specimen from each locality was sequenced for the nuclear 18S rRNA locus. Evolutionary relationships were assessed using maximum‐likelihood and Bayesian inferences, while divergence time estimations were conducted using BEAST. A Bayesian species delimitation approach was undertaken to explore the number of possible novel lineages nested within Opisthopatus, while population genetic structure was examined for the COI locus using ARLEQUIN. Phylogenetic results revealed that O. cinctipes is a species complex comprising seven geographically discrete and statistically well‐supported clades. An independent statistical approach to species delimitations circumscribed ca. 67 species. Results from divergence time estimation and rate constancy tests revealed near constant net diversification occurring throughout the Eocene and Oligocene with subdivision of ranges during the Miocene. Gross morphological characters such as leg pair number within O. cinctipes were invariant, while dorsal and ventral integument colour was highly polymorphic. However, scanning electron microscopy revealed considerable differences both between and within clades. The caveats associated with both morphological and algorithmic delineation of species boundaries are discussed. The five novel Opisthopatus species are described.  相似文献   

2.
Evolutionary relationships in the widely distributed velvet worm Peripatopsis balfouri sensu lato species complex were examined using DNA sequence data, gross and SEM morphology. Sequence data were generated for the COI mtDNA and the 18S rRNA loci and analysed using a Bayesian inference approach, maximum likelihood and maximum parsimony. Phylogenetic analyses of the combined DNA sequence data revealed that Peripatopsis clavigera specimens from the southern Cape (clade 1) was sister to P. balfouri sensu lato specimens from the Cederberg Mountains (clade 2). Within the main P. balfouri sensu lato species complex, three addition clades could be discerned (clades 3, 4 and 5). The obligatory troglobitic species Peripatopsis alba was equidistant between the Cape Peninsula and adjacent interior (clade 3) and the two Boland and Hottentots Holland Mountains (clades 4 and 5). On the Cape Peninsula, P. stelliporata specimens nested among the sympatric P. balfouri sensu lato specimens. The Cape Peninsula specimens were sister to specimens from Jonkershoek site 1, Kogelberg and Simonsberg. Two Boland clades were retrieved, comprising Du Toit's Kloof, Bain's Kloof and Mitchell's Pass and sister (in clade 4) to specimens from the Boland and adjacent Hottentots Holland Mountains in clade 5. These results revealed complex biogeographic patterning in the P. balfouri sensu lato species complex. The presence of sympatric, yet genetically discrete species pairs at six of the sample localities (Du Toit's Kloof, Simonsberg, Jonkershoek sites 1 and 2, Kogelberg and Landroskop) suggests that there is reproductive isolation between the lineages. Divergence time estimations suggest a Miocene/Pliocene/Pleistocene cladogenesis. A taxonomic revision of the P. balfouri sensu lato species complex was undertaken to stabilize the taxonomy. P. clavigera is monophyletic and retained for the southern Cape specimens, P. balfouri sensu stricto is now confined to the Cape Peninsula and adjacent interior, while P. stelliporata is regarded as a junior synonym of the latter taxon, P. alba is endemic to the Wynberg Cave systems on the Cape Peninsula. Three novel species (Peripatopsis cederbergiensis, sp. n., Peripatopsis bolandi sp. n. and Peripatopsis purpureus, sp. n.) are described.  相似文献   

3.
We present maximum likelihood and Bayesian inference relative time‐tree analyses of aligned gene sequences from a worldwide collection of craniiform brachiopods belonging to two genera, Novocrania and Neoancistrocrania. Sequences were obtained from one mitochondrial and three nuclear‐encoded ribosomal RNA genes from varying numbers of specimens. Data‐exploration by network (splits) analyses indicates that each gene identifies the same divergent clades and (with one minor exception) the same inter‐clade relationships. Neoancistrocrania specimens were found only in the Pacific Ocean, near Japan, on the Norfolk and Chesterfield Ridges, and near the Solomon Islands. The Novocrania clades, in approximate order of increasing distance from the root comprise 1. a ‘Northern’ clade of animals collected in the NE. Atlantic, W. Mediterranean and Adriatic; 2. a ‘Tethyan’ clade comprising animals from the E. Mediterranean, Cape Verde islands and the Caribbean (Belize and Jamaica); 3. a ‘NE. Pacific’ clade containing animals from Vancouver Island and from localities near Japan and south of Taiwan; 4. a ‘Southern’ clade that contains two widely separated subclades, one from New Zealand and the other with an extraordinarily wide distribution, ranging from near Japan in the north to the Chesterfield Ridge and Solomon Islands in the West, and in the East to the Galapagos Islands, the coast of South America (Chile) and Richardson seamount (off South Africa) in the South Atlantic. To the South, members of this clade were found in the Weddell, Scotia and Bellinghausen Antarctic Seas. The root of the extant craniid radiation was previously found (by relaxed‐clock analysis) to lie on the branch connecting the two genera so that, in effect, the one clade of Neoancistrocrania serves to polarise evolutionary relationships within the several clades of Novocrania. As previously suggested, all results confirm that Neoancistrocrania is sister to the ‘Northern’ Novocrania clade, and this leads to a proposal that Neoancistrocrania represents one extreme of a wide range of variation in ancestral ventral valve mineralisation, speciation (~90 Ma) resulting from competitive exclusion in rapidly‐growing reef environments. To the extent possible, the identified molecular clades are correlated with named species of Novocrania. The reproductive and population biology of craniid brachiopods is not well known, but from available evidence they are considered to have low‐dispersal potential and, except in enclosed localities such as cold‐water fjords, to have small effective population sizes, features which are consistent with the observed divergent populations in well‐separated localities. Exceptionally slow craniid molecular (rDNA) evolution is suggested by the short branch of Novocrania where it has been used as an outgroup for large‐scale analyses of metazoans. Slow molecular evolution is also indicated by the existence of a distinct Tethyan clade, reflecting restricted dispersal at former times, and by the uniform, short, genetic distances and exceptionally wide geographical distribution of the Southern clade. Thus, the geographical distribution and phylogenetic divergence of craniid brachiopods is an example of phylotectonics, in which relationships revealed by phylogenetic analyses reflect opportunities for dispersal and settlement that were created by tectonic plate movements associated, in this case, with opening and closure of Tethys and the breakup of Gondwana. Molecular dating of craniid divergences and radiochemical dating of tectonic events thus illuminate one another. © 2014 The Linnean Society of London  相似文献   

4.
The bat family Nycteridae contains only the genus Nycteris, which comprises 13 currently recognized species from Africa and the Arabian Peninsula, one species from Madagascar, and two species restricted to Malaysia and Indonesia in South‐East Asia. We investigated genetic variation, clade membership, and phylogenetic relationships in Nycteridae with broad sampling across Africa for most clades. We sequenced mitochondrial cytochrome b (cytb) and four independent nuclear introns (2,166 bp) from 253 individuals. Although our samples did not include all recognized species, we recovered at least 16 deeply divergent monophyletic lineages using independent mitochondrial and multilocus nuclear datasets in both gene tree and species tree analyses. Mean pairwise uncorrected genetic distances among species‐ranked Nycteris clades (17% for cytb and 4% for concatenated introns) suggest high levels of phylogenetic diversity in Nycteridae. We found a large number of designated clades whose members are distributed wholly or partly in East Africa (10 of 16 clades), indicating that Nycteris diversity has been historically underestimated and raising the possibility that additional unsampled and/or undescribed Nycteris species occur in more poorly sampled Central and West Africa. Well‐resolved mitochondrial, concatenated nuclear, and species trees strongly supported African ancestry for SE Asian species. Species tree analyses strongly support two deeply diverged subclades that have not previously been recognized, and these clades may warrant recognition as subgenera. Our analyses also strongly support four traditionally recognized species groups of Nycteris. Mitonuclear discordance regarding geographic population structure in Nycteris thebaica appears to result from male‐biased dispersal in this species. Our analyses, almost wholly based on museum voucher specimens, serve to identify species‐rank clades that can be tested with independent datasets, such as morphology, vocalizations, distributions, and ectoparasites. Our analyses highlight the need for a comprehensive revision of Nycteridae.  相似文献   

5.
Aim Geomorphic evolution of river basins can shape the structure and diversity of aquatic communities, but understanding the biological significance of basin evolution can be challenging in semi‐arid regions with ephemeral or endorheic conditions and complex drainage configurations such as the Sierra Madre Occidental (SMO) in North America. In this study, we characterized range‐wide patterns of genetic variation in the Mexican stoneroller (Campostoma ornatum) to infer how orogenic and erosional influences on river basin connectivity have given rise to the diverse and largely endemic freshwater communities across the SMO region. Location Twelve drainage basins across northern Mexico and the south‐western United States, centred on the SMO. Methods  We collected 202 specimens from 98 localities across the range of C. ornatum. We performed phylogenetic analyses of DNA sequences from one mitochondrial (cytochrome b) and one nuclear (intron S7) gene. Phylogenetic trees were estimated for each data set using maximum likelihood and Bayesian inference. Results Phylogenetic analyses consistently resolved a monophyletic C. ornatum composed of multiple evolutionary lineages within two markedly divergent clades that differentiate northern drainages from southern drainages in the SMO region. Within‐clade patterns of divergence corresponded to fine‐scale geographic structure within and among SMO drainage basins. However, the geographic distribution of evolutionary lineages within the northern and southern clades did not always correspond to the geographic configuration of drainage basins. Some subclades encompassed multiple drainages, and individuals from a single drainage were sometimes recovered in multiple subclades. Main conclusions Our findings indicate that a common ancestor of Mexican Campostoma is likely to have entered north‐west Mexico through an ancient Rio Grande system that extended as far south as the Rio Nazas and Rio Aguanaval. The geographic orientation of the two strongly divergent clades recovered within C. ornatum provides evidence of long‐standing isolation of southern basins from northern basins within the ancestral Rio Grande system, possibly due to the combined influence of tectonic events and increasing regional aridity. Geographic patterns of genetic variation also provide evidence of range expansion from Atlantic to Pacific drainages due to drainage evolution and river capture events, as well as further inter‐basin exchange via more recent headwater capture events, hydrological connections and possible anthropogenic introductions.  相似文献   

6.
Accurately identifying species is a crucial step for developing conservation strategies for freshwater mussels, one of the most imperiled faunas in North America. This study uses genetic data to re‐examine species delineation in the genus Cyprogenia. Historically, Cyprogenia found west of the Mississippi River have been ascribed to Cyprogenia aberti (Conrad 1850 ), and those east of the Mississippi River were classified as Cyprogenia stegaria (Rafinesque 1820). Previous studies using mitochondrial DNA sequences indicated that C. aberti and C. stegaria were not reciprocally monophyletic groups, suggesting the need for systematic revision. We generated a novel dataset consisting of 10 microsatellite loci and combined it with sequence data from the mitochondrial ND1 gene for 223 Cyprogenia specimens. Bayesian analysis of the ND1 nucleotide sequences identified two divergent clades that differ by 15.9%. Members of these two clades occur sympatrically across most sampling locations. In contrast, microsatellite genotypes support recognition of three allopatric clusters defined by major hydrologic basins. The divergent mitochondrial lineages are highly correlated with the color of the conglutinate lures used by mussels to attract and infest host fishes, and tests for selection at the ND1 locus were positive. We infer that the incongruence between mtDNA and microsatellite data in Cyprogenia may be the result of a combination of incomplete lineage sorting and balancing selection on lure color. Our results provide further evidence that mitochondrial markers are not always neutral with respect to selection, and highlight the potential problems of relying on a single‐locus‐marker for delineating species.  相似文献   

7.
Reptiles are the animals with the most described coccidian species among all vertebrates. However, the co‐evolutionary relationships in this host–parasite system have been scarcely studied. Paperna & Landsberg (South African Journal of Zoology, 24, 1989, 345) proposed the independent evolutionary origin of the Eimeria‐like species isolated from reptiles based on morphological and developmental characteristics of their oocysts. Accordingly, they suggested the reclassification of these parasites in two new genera, Choleoeimeria and Acroeimeria. The validity of the genera proposed to classify reptilian Eimeria species remained unresolved due to the lack of species genetically characterized. In this study, we included 18S rRNA gene sequences from seven Eimeria‐like species isolated from five different lizard host families. The phylogenetic analyses confirmed the independent evolutionary origin of the Eimeria‐like species infecting lizards. Within this group, most species were placed into two monophyletic clades. One of them included the species with ellipsoidal oocysts (i.e. Choleoeimeria‐like oocysts), whereas the species with more spheroidal oocysts (i.e. Acroeimeria‐like oocysts) were included in the second one. This result supports the taxonomic validity of the genera Acroeimeria and Choleoeimeria.  相似文献   

8.
Mitochondrial DNA divergence among populations of the Japanese spinous loach Cobitis shikokuensis, endemic to Shikoku Island, was investigated by restricted fragment length polymorphism analysis. A total of 68 restriction sites on DNA fragments from the cytochrome b to D-loop regions and from the 12S rRNA to 16S rRNA regions, amplified by PCR, were analyzed. A total of 12 haplotypes (plus 6 in outgroups) were detected in 268 specimens collected from 19 localities in seven rivers (and 41 specimens from four localities in three rivers in outgroups). Three of the seven river populations of C. shikokuensis were shown to have unique haplotypes, and four of the seven river populations were monomorphic. The nested structure of the haplotype network for populations of C. shikokuensis exhibited two large clades corresponding to (1) populations from the Shimanto River and its neighbors and (2) two genetically divergent populations in the Shigenobu and Iwamatsu Rivers. The population from the Shimanto River, the largest river inhabited by C. shikokuensis, maintains great haplotype diversity as well as the allozyme diversity previously reported. On the other hand, populations from the Hiji River, the second largest river, which exhibited the highest allozyme diversity, were monomorphic in their mtDNA. The nested clade analysis (NCA) revealed that past fragmentation between the above two clades could occur in the initial distribution process of C. shikokuensis. The large genetic divergence of two river populations from the Shigenobu and Iwamatsu Rivers was inferred to be caused by a process of long distance colonization and fragmentation. MtDNA introgression into the Hiji River population from southern river populations was suggested. Taking genetic divergence into consideration, each river population of C. shikokuensis should be conserved separately as like a distinct species, and conservation programs for the small populations showing less genetic variability should be invoked as soon as possible.  相似文献   

9.
The lesser Egyptian jerboa Jaculus jaculus is a desert dwelling rodent that inhabits a broad Arabian–Saharan arid zone. Recently, two distant sympatric lineages were described in North‐West Africa, based on morphometric and molecular data, which may correspond to two cryptic species. In the current study, phylogenetic relationships and phylogeographical structure among those lineages and geographical populations from North Africa and the Middle East were investigated. The phylogeographical patterns and genetic diversity of the cytochrome b gene (1110 bp) were addressed on 111 jerboas from 41 localities. We found that the variation in Africa is partitioned into two divergent mitochondrial clades (10.5% divergence relating to 1.65–4.92 Mya) that corresponds to the two cryptic species: J. jaculus and J. deserti. Diversifications within those cryptic species/clades were dated to 0.23–1.13 Mya, suggesting that the Middle Pleistocene climatic change and its environmental consequences affected the evolutionary history of African jerboas. The third distant clade detected, found in the Middle East region, most likely represents a distinct evolutionary unit, independent of the two African lineages. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

10.
An electrophoretic study was conducted on nematodes of the genus Physaloptera that occur in the stomachs of two species of Australian bandicoot, Perameles nasuta and P. gunnii. Each nematode was genetically characterised at 28 enzymes encoding a presumptive 30 loci. No fixed genetic differences were detected between the nematodes in P. gunnii from two localities. A comparison of nematodes from the two host species, however, revealed fixed genetic differences at 15 (50%) loci. This suggests that each host species is infected by a different species of Physaloptera.  相似文献   

11.
12.
Jerboas belonging to the genus Jaculus are widely distributed rodents inhabiting Palearctic desert and semi‐desert areas. Previous studies on the lesser Egyptian jerboa Jaculus jaculus showed the existence of various morphological forms of controversial taxonomic status. They were sometimes related to two different species, J. jaculus and Jaculus deserti, although this has not been recognized in recent taxonomic updates. To clarify the systematic status of J. jaculus in Tunisia, we performed molecular (phylogenetic analyses of cytochrome b sequences), morphological (multivariate analyses of 13 skull measurements) and karyotypic (standard preparations from bone marrow cells) analyses on a number of specimens collected from ten localities. Our analyses revealed two monophyletic, well differentiated clades, with a mean genetic divergence value (K2P = 10.9 ± 0.01%), which is within the range of distances generally observed between rodent species. Morphometric analyses clearly separated populations of the two genetic clades from each other. However, karyotypes of individuals from both clades appeared similar. Individuals from both molecular clades/morphometric groups were found in sympatry in most of the localities sampled. These results, as obtained from a restricted area of the total distribution, suggest that there are two separate species within the currently accepted J. jaculus in Tunisia. Alternative hypotheses such as the occurrence of a strong, ancient phylogeographic structure, or the presence of pseudogenes, are also considered to account for the results obtained. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 673–686.  相似文献   

13.
The vlei rat Otomys irroratus has a wide distribution in southern Africa with several datasets indicating the presence of two putative species (O. irroratus and O. auratus). In the present study we use mitochrondrial cyt b data (~950 bp) from 98 specimens (including museum material) collected throughout the range of the species to determine the geographical limits of the two recognized species, and we link this to niche modelling to validate these species. Phylogenetic analysis of the DNA sequence data, using maximum parsimony, neighbour joining and Bayesian inference, retrieved two divergent statistically well‐supported clades. Clade A occurs in the Western and Eastern Cape while Clade B occurs in the Free State, KwaZulu‐Natal, Northern Cape and Mpumalanga provinces of South Africa and Zimbabwe. Mean sequence divergence between the two clades (A and B) was 7.0% and between sub‐clades comprising clade B it was 4.8%; the two clades diverged during the Pleistocene. Within Clade A the mean sequence divergence among specimens was 1.91%. Niche modelling revealed that the incipient species occupy distinct bioclimatic niches associated with seasonality of precipitation. Our data allow insightful analysis into the factors that could have led to cladogenesis within this rodent. More significantly, the new data enable us to pinpoint the Eastern Cape province as a contact zone for the divergent species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 192–206.  相似文献   

14.
To test the association between Pleistocene forest dynamics relative to elevation and the population dynamics of arboreal small mammals, we examined the phylogeographical predictions for the genetic structure of the red and white giant flying squirrel (Petaurista alborufus lena) and the Indian giant flying squirrel (P. philippensis grandis) using complete mitochondrial control region sequences. Both giant flying squirrels are endemic subspecies to Taiwan and are sympatric in much of their range. In the phylogenetic analyses, we included 35 specimens of P. alborufus lena collected from 20 localities and five specimens with unknown sampling localities. Also, we phylogenetically examined 32 specimens of P. philippensis grandis from 18 localities and three specimens with unknown sampling localities. We identified 36 haplotypes of P. alborufus lena and 33 haplotypes of P. philippensis grandis. Although we did not recognize major phylogroups, we found several minor phylogroups in both subspecies, suggesting similar evolutionary histories. Phylogeographical and demographic tests showed distributions of these two subspecies expanded into coniferous and mixed forests that developed during glaciation in Taiwan's lowlands and middle lands. This suggests that these two Petaurista subspecies shifted elevation from mountainous areas to lowlands during glaciation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 404–419.  相似文献   

15.
The morphological and molecular differentiation of the Micrasterias truncata (Corda) ex Bréb species complex was investigated. In total, 17 strains traditionally assigned to M. truncata were isolated from different European localities (Czech Republic, southwest France, Ireland), and obtained from public culture collections. In addition, strains of the morphologically similar species, M. decemdentata (Nägeli) W. Archer and M. zeylanica F. E. Fritsch, were also included. Molecular phylogenetic analysis based on trnGucc intron sequences revealed five well supported clades. Two Australian strains assigned to M. truncata var. pusilla G. S. West formed a lineage sister to M. zeylanica. This was evident from a concatenated phylogeny based on small subunit rDNA and trnGucc intron sequences. The isolated position of these strains was also illustrated by parallel landmark‐based geometric morphometric analysis of cell shapes. The strains NIES 783 and NIES 784 probably represent a separate species. Particular analysis, including additional strains, is needed to resolve the relationship inside this lineage. The second phylogenetic lineage, containing two strains of M. truncata var. semiradiata (Kützing) Wolle, was also different from other strains on the basis of morphometric data. We suggest recognizing this variety as a separate species, Micrasterias semiradiata L.A. Brébisson ex F. T. Kützing. The remaining three clades formed a firmly supported group of the ‘core’M. truncata recognized by both molecular markers. However, neither any morphological, morphometric, nor geographical pattern was detected among members of these three clades. This pattern could be caused by a relatively recent origin of these lineages that may represent a sympatric, truly cryptic species. Strains attributable to traditional morphologically defined variety M. truncata var. neodamensis were nested within the ‘core’M. truncata.  相似文献   

16.
The surprising diversity and recent dramatic decline of freshwater mussels in North America have been well documented, although inventory efforts to date have been concentrated in the eastern United States. Unlike their eastern counterparts, western freshwater mussels have received comparatively little attention. The accurate identity of western lineages is a necessary component for future inventory, monitoring, and ecological work involving these taxa. Here we initiate a study involving the most speciose genus (Anodonta) in western North America, incorporating information about type localities and type specimen morphology and describing the discovery of three highly divergent lineages among four western Anodonta species. In a limited phylogenetic analysis, we find (1) that A. californiensis/nuttalliana and A.oregonensis/kennerlyi are distinct, highly divergent clades, and (2) that A. beringiana is more closely allied with A. woodiana, an Asian species, than either of the other two western North American clades. We were largely unable to resolve the placement of these three clades with respect to other anodontines, and suggest the need for a broader phylogenetic framework. We recommend, however, that the existence of these three deeply divergent groups be considered in the development of regional monitoring, conservation and research plans despite the taxonomic uncertainty.  相似文献   

17.
Derycke, S., De Ley, P., De Ley, I.T., Holovachov, O., Rigaux, A. & Moens, T. (2010). Linking DNA sequences to morphology: cryptic diversity and population genetic structure in the marine nematode Thoracostoma trachygaster (Nematoda, Leptosomatidae).—Zoologica Scripta, 39, 276–289. Recent taxonomic and population genetic studies have revealed the presence of substantial cryptic diversity through sequence analysis of nematode morphospecies classified in different major clades. Correct interpretations of intra‐ and interspecific genetic variation require certainty about the conspecificity of the sequenced specimens, which in turn must depend on appropriate protocols with built‐in verifiability procedures. In this study, we performed a population genetic study in the free‐living marine nematode Thoracostoma trachygaster, a member of one of the earliest major clades to diverge in nematode phylogeny. We collected 367 nematodes from 11 populations located in the Californian Bight, all of which were video captured before DNA extraction to document and verify their individual morphology. Sequences for the cytochrome c oxidase subunit 1 (COI), D2D3 and 18S genes showed eight deeply divergent clades, and using a reverse taxonomy approach, six of these clades proved to be other morphospecies than T. trachygaster. Phylogenetic analyses of COI, internal transcribed spacer and D2D3 showed evidence for two sympatrically distributed cryptic species within the morphospecies T. trachygaster. Population genetic analyses of the most widespread cryptic species showed a moderate genetic structuring (ΦST = 0.28), and 18% of this genetic variation was caused by differences between populations north and south of Point Conception. Within the southern Californian Bight, some genetic differentiation could be attributed to differences between populations north and south of Malibu, supporting the idea of a barrier to gene flow near Los Angeles region. The results for T. trachygaster support the contention that species diversity within free‐living nematodes is underestimated, and that dispersal of marine nematodes from tidal environments associated with kelp holdfasts is substantial at scales of a few 100 km.  相似文献   

18.
A phylogenetic analysis of the order Embioptera is presented with a revised classification based on results of the analysis. Eighty‐two species of Embioptera are included from all families except Paedembiidae Ross and Embonychidae Navás. Monophyly of each of the eight remaining currently recognized families is tested except Andesembiidae Ross, for which only a single species was included. Nine outgroup taxa are included from Blattaria, Grylloblattaria, Mantodea, Mantophasmatodea, Orthoptera, Phasmida and Plecoptera. Ninety‐six morphological characters were analysed along with DNA sequence data from the five genes 16S rRNA, 18S rRNA, 28S rRNA, cytochrome c oxidase I and histone III. Data were analysed in combined analyses of all data using parsimony and Bayesian optimality criteria, and combined molecular data were analysed using maximum likelihood. Several major conclusions about Embioptera relationships and classification are based on interpretation of these analyses. Of eight families for which monophyly was tested, four were found to be monophyletic under each optimality criterion: Clothodidae Davis, Anisembiidae Davis, Oligotomidae Enderlein and Teratembiidae Krauss. Australembiidae Ross was not recovered as monophyletic in the likelihood analysis in which one Australembia Ross species was recovered in a position distant from other australembiids. This analysis included only molecular data and the topology was not strongly supported. Given this, and because parsimony and the Bayesian analyses recovered a strongly supported clade including all Australembiidae, we regard this family also as monophyletic. Three other families – Notoligotomidae Davis, Archembiidae Ross and Embiidae Burmeister, as historically delimited – were not found to be monophyletic under any optimality criterion. Notoligotomidae is restricted here to include only the genus Notoligotoma Davis with a new family, Ptilocerembiidae Miller and Edgerly, new family, erected to include the genus Ptilocerembia Friederichs. Archembiidae is restricted here to include only the genera Archembia Ross and Calamoclostes Enderlein. The family group name Scelembiidae Ross is resurrected from synonymy with Archembiidae (new status) to include all other genera recently placed in Archembiidae. Embiidae is not demonstrably monophyletic with species currently placed in the family resolved in three separate clades under each optimality criterion. Because taxon sampling is not extensive within this family in this analysis, no changes are made to Embiidae classification. Relationships between families delimited herein are not strongly supported under any optimality criterion with a few exceptions. Either Clothodidae Davis (parsimony) or Australembiidae Ross (Bayesian) is the sister to the remaining Embioptera taxa. The Bayesian analysis includes Australembiidae as the sister to all other Embioptera except Clothididae, suggesting that each of these taxa is a relatively plesiomorphic representatative of the order. Oligotomidae and Teratembiidae are sister groups, and Archembiidae (sensu novum), Ptilocerembiidae, Andesembiidae and Anisembiidae form a monophyletic group under each optimality criterion. Each family is discussed in reference to this analysis, diagnostic combinations and taxon compositions are provided, and a key to families of Embioptera is included.  相似文献   

19.
We investigate the evolutionary history of the wide‐ranging Nearctic treefrog Hyla arenicolor through the integration of extensive range‐wide sampling, phylogenetic analyses of multilocus genetic data, and divergence dating. Previous phylogeographic studies of this frog documented a potential signature of introgressive hybridization from an ecologically and morphologically divergent sister species. Based on our Bayesian phylogenetic analyses of mitochondrial DNA, we inferred strong phylogeographic structure in H. arenicolor as indicated by seven well‐supported clades, five of which correspond to well‐defined biogeographic regions. Clades from the Balsas Basin and southwestern Central Mexican Plateau in Mexico, and the Grand Canyon of Arizona, group with the morphologically, behaviorally, and ecologically divergent mountain treefrogs in the H. eximia group, rendering H. arenicolor as paraphyletic. The phylogenetic position of at least two of these three H. arenicolor clades within the H. eximia group, however, is most likely the result of several episodes of introgressive hybridization and subsequent mitochondrial gene capture separated in time and space, as supported by evidence from the nuclear genes. Hyla arenicolor from the Balsas Basin appear to be deeply divergent from other H. arenicolor and represent a distinctly different species. Results suggests that introgressive hybridization events, both ancient and contemporary, coupled with late Neogene vicariance and Pleistocene climate‐driven range shifts, have all played a role in the historical diversification of H. arenicolor.  相似文献   

20.
The mesic four‐striped grass rat Rhabdomys dilectus De Winton, 1897 is distributed in mesic regions of southern and eastern Africa. We carried out a molecular and chromosomal study of the northernmost populations of the species to provide insight into the subspecific boundaries identified within the species and to describe its genetic structure in Eastern Africa. Maximum likelihood, maximum parsimony and neighbour‐joining methods were used to construct phylogenetic relationships among all the haplotypes belonging to the large part of the species range. Times of divergences were estimated assuming a relaxed molecular clock with two calibration points. We identified three well‐supported clades within R. dilectus. One basal clade corresponding to Rhabdomys d. chakae (2n = 48) is found in South Africa. Two additional sister clades corresponding to R. d. dilectus (2n = 48 and 2n = 46) are allopatrically distributed in southern and northern parts of the species range. Genetic divergence among the three clades is relatively high (ranges 4.2–5.7%). A very divergent new karyotype 2n = 38, FNa = 60 was found in two high‐altitude populations on Mt. Meru and Mt. Kilimanjaro. The karyotype differences consist in three Robertsonian fusions and one whole‐arm reciprocal translocation. Interestingly, the mtDNA phylogeny does not match with the diploid numbers. In fact, the 2n = 38 specimens form a monophyletic group within a clade that includes specimens with the 2n = 46 karyotype that appears as paraphyletic. We estimated the new karyotype originated in peripatric condition during the last phases of the Pleistocene. This study confirms the importance of chromosomal analysis in detecting taxonomic units and cryptic diversity in rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号