首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plants can detect cues associated with the risk of future herbivory and modify defence phenotypes accordingly; however, our current understanding is limited both with respect to the range of early warning cues to which plants respond and the nature of the responses. Here we report that exposure to volatile emissions from plant tissues infested with herbivore eggs promotes stronger defence responses to subsequent herbivory in two Brassica species. Furthermore, exposure to these volatile cues elicited an apparent shift from growth to reproduction in Brassica nigra, with exposed plants exhibiting increased flower and seed production, but reduced leaf production, relative to unexposed controls. Our results thus document plant defence priming in response to a novel environmental cue, oviposition‐induced plant volatiles, while also showing that plant responses to early warning cues can include changes in both defence and life‐history traits.  相似文献   

2.
Plants infested with a single herbivore species can attract natural enemies through the emission of herbivore‐induced plant volatiles (HIPVs). However, under natural conditions plants are often attacked by more than one herbivore species. We investigated the olfactory response of a generalist predators Macrolophus caliginosus to pepper infested with two‐spotted spider mites, Tetranychus urticae, or green peach aphid, Myzus persicae, vs. plants infested with both herbivore species in a Y‐tube olfactometer set up. In addition, the constituents of volatile blends from plants exposed to multiple or single herbivory were identified by gas chromatography‐mass spectrometry (GC‐MS). The mirid bugs showed a stronger response to volatiles emitted from plants simultaneously infested with spider mites and aphids than to those emitted from plants infested by just one herbivore, irrespective of the species. Combined with results from previous studies under similar conditions we infer that this was a reaction to herbivore induced plant volatiles. The GC‐MS analysis showed that single herbivory induced the release of 22 additional compounds as compared with the volatiles emitted from clean plants. Quantitative analyses revealed that the amount of volatile blends emitted from pepper infested by both herbivores was significantly higher than that from pepper infested by a single herbivore. Moreover, two unique substances were tentatively identified (with a probability of 94% and 91%, respectively) in volatiles emitted by multiple herbivory damaged plants: α‐zingiberene and dodecyl acetate.  相似文献   

3.
4.
Plants produce species-specific herbivore-induced plant volatiles (HIPVs) after damage. We tested the hypothesis that herbivore-specific HIPVs prime neighboring plants to induce defenses specific to the priming herbivore. Since Manduca sexta (specialist) and Heliothis virescens (generalist) herbivory induced unique HIPV profiles in Nicotiana benthamiana, we used these HIPVs to prime receiver plants for defense responses to simulated herbivory (mechanical wounding and herbivore regurgitant application). Jasmonic acid (JA) accumulations and emitted volatile profiles were monitored as representative defense responses since JA is the major plant hormone involved in wound and defense signaling and HIPVs have been implicated as signals in tritrophic interactions. Herbivore species-specific HIPVs primed neighboring plants, which produced 2 to 4 times more volatiles and JA after simulated herbivory when compared to similarly treated constitutive volatile-exposed plants. However, HIPV-exposed plants accumulated similar amounts of volatiles and JA independent of the combination of priming or challenging herbivore. Furthermore, volatile profiles emitted by primed plants depended only on the challenging herbivore species but not on the species-specific HIPV profile of damaged emitter plants. This suggests that feeding by either herbivore species primed neighboring plants for increased HIPV emissions specific to the subsequently attacking herbivore and is probably controlled by JA.  相似文献   

5.
Many natural enemies of herbivorous arthropods use herbivore‐induced plant volatiles to locate their prey. These foraging cues consist of mixtures of compounds that show a considerable variation within and among plant–herbivore combinations, a situation that favours a flexible approach in the foraging behaviour of the natural enemies. In this paper, we address the flexibility in behavioural responses of the predatory mite Phytoseiulus persimilis Athias‐Henriot (Acari: Phytoseiidae) to herbivore‐induced plant volatiles. In particular, we investigated the effect of experience with one component of a herbivore‐induced volatile blend: methyl salicylate (MeSA). We compared the responses of three groups of predatory mites: (1) those reared from egg to adult on Tetranychus urticae Koch (Acari: Tetranychidae) on lima bean plants (Phaseolus lunatus L. that produces MeSA), (2) those reared on T. urticae on cucumber (Cucumus sativus L. that does not produce MeSA), and (3) those reared on T. urticae on cucumber in the presence of synthetic MeSA. Exposure to MeSA during the rearing period (groups 1 and 3) resulted in an attraction to the single compound MeSA in a Y‐tube olfactometer. Moreover, exposure to MeSA affected the choice of predatory mites between two volatile blends that were similar, except for the presence of MeSA. Predators reared on lima bean plants preferred the volatile blend from T. urticae‐induced lima bean (including MeSA) to the volatile blend from jasmonic‐acid induced lima bean (lacking MeSA), but predators reared on cucumber preferred the volatile blend from the latter. Predatory mites reared on cucumber in the presence of synthetic MeSA did not discriminate between these two blends. Exposure to MeSA for 3 days in the adult phase, after rearing on cucumber, also resulted in attraction to the single compound MeSA. We conclude that a minor difference in the composition of the volatile blend to which a predatory mite is exposed can explain its preferences between two odour sources.  相似文献   

6.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

7.
8.
Plant phenotypic plasticity in response to antagonists can affect other community members such as mutualists, conferring potential ecological costs associated with inducible plant defence. For flowering plants, induction of defences to deal with herbivores can lead to disruption of plant–pollinator interactions. Current knowledge on the full extent of herbivore‐induced changes in flower traits is limited, and we know little about specificity of induction of flower traits and specificity of effect on flower visitors. We exposed flowering Brassica nigra plants to six insect herbivore species and recorded changes in flower traits (flower abundance, morphology, colour, volatile emission, nectar quantity, and pollen quantity and size) and the behaviour of two pollinating insects. Our results show that herbivory can affect multiple flower traits and pollinator behaviour. Most plastic floral traits were flower morphology, colour, the composition of the volatile blend, and nectar production. Herbivore‐induced changes in flower traits resulted in positive, negative, or neutral effects on pollinator behaviour. Effects on flower traits and pollinator behaviour were herbivore species‐specific. Flowers show extensive plasticity in response to antagonist herbivores, with contrasting effects on mutualist pollinators. Antagonists can potentially act as agents of selection on flower traits and plant reproduction via plant‐mediated interactions with mutualists.  相似文献   

9.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

10.
Plant responses to dual herbivore attack are increasingly studied, but effects on the metabolome have largely been restricted to volatile metabolites and defence‐related non‐volatile metabolites. However, plants subjected to stress, such as herbivory, undergo major changes in both primary and secondary metabolism. Using a naturally occurring system, we investigated metabolome‐wide effects of single or dual herbivory on Brassica nigra plants by Brevicoryne brassicae aphids and Pieris brassicae caterpillars, while also considering the effect of aphid density. Metabolomic analysis of leaf material showed that single and dual herbivory had strong effects on the plant metabolome, with caterpillar feeding having the strongest influence. Additionally, aphid‐density‐dependent effects were found in both the single and dual infestation scenarios. Multivariate analysis revealed treatment‐specific metabolomic profiles, and effects were largely driven by alterations in the glucosinolate and sugar pools. Our work shows that analysing the plant metabolome as a single entity rather than as individual metabolites provides new insights into the subcellular processes underlying plant defence against multiple herbivore attackers. These processes appear to be importantly influenced by insect density.  相似文献   

11.
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management.  相似文献   

12.
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress‐related genes are significantly up‐regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)‐3‐hexen‐1‐yl acetate (Z‐3‐HAC), and that seedlings primed with Z‐3‐HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.  相似文献   

13.
Beneficial soil‐borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col‐0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant‐mediated interaction between the non‐pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore‐induced plant volatiles. The volatile blend from rhizobacteria‐treated aphid‐infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid‐infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore‐induced volatiles and parasitoid response to aphid‐infested plants is lost in an Arabidopsis mutant (aos/dde2‐2) that is impaired in jasmonic acid production. By modifying the blend of herbivore‐induced plant volatiles that depend on the jasmonic acid‐signalling pathway, root‐colonizing microbes interfere with the attraction of parasitoids of leaf herbivores.  相似文献   

14.
1. Understanding the degree to which populations and communities are limited by both bottom‐up and top‐down effects is still a major challenge for ecologists, and manipulation of plant quality, for example, can alter herbivory rates in plants. In addition, biotic defence by ants can directly influence the populations of herbivores, as demonstrated by increased rates of herbivory or increased herbivore density after ant exclusion. The aim of this study was to evaluate bottom‐up and top‐down effects on herbivory rates in a mutualistic ant‐plant. 2. In this study, the role of Azteca alfari ants as biotic defence in individuals of Cecropia pachystachya was investigated experimentally with a simultaneous manipulation of both bottom‐up (fertilisation) and top‐down (ant exclusion) factors. Four treatments were used in a fully factorial design, with 15 replicates for each treatment: (i) control plants, without manipulation; (ii) fertilised plants, ants not manipulated; (iii) unfertilised plants and excluded ants and (iv) fertilised plants and ants excluded. 3. Fertilisation increased the availability of foliar nitrogen in C. pachystachya, and herbivory rates by chewing insects were significantly higher in fertilised plants with ants excluded. 4. Herbivory, however, was more influenced by bottom‐up effects – such as the quality of the host plant – than by top‐down effects caused by ants as biotic defences, reinforcing the crucial role of leaf nutritional quality for herbivory levels experienced by plants. Conditionality in ant defence under increased nutritional quality of leaves through fertilisation might explain increased levels of herbivory in plants with higher leaf nitrogen.  相似文献   

15.
1. Plant–plant communication has been found to affect interactions between herbivores and plants in several model systems. In these systems, herbivore‐induced volatile chemical cues are emitted and perceived by other plants (receivers), which subsequently change their defensive phenotypes. Most studies have focused on how the effects of volatile cues affect plant damage, whereas herbivore performance has rarely been examined. 2. In this study, it is shown that plant–plant communication between willows reduced the growth rate, feeding rate, and conversion efficiency of some individuals but not others of a generalist caterpillar, Orgyia vetusta. 3. Using a paired, no‐choice trial design, there was substantial variation between caterpillar individuals in their response to willows that had been induced with a volatile plant–plant cue. This variation was explained by feeding parameters of the individual herbivores. Individuals behaved similarly when fed induced and non‐induced willow leaves. Specifically, growth rates of caterpillars that grew rapidly on non‐induced willow leaves were negatively affected by plant–plant cues, but growth rates of caterpillars that grew slowly on non‐induced willow leaves were not affected by the responses to volatiles from neighbouring willows. 4. Induction by volatile plant–plant cues reduced the growth rates of those individual herbivores that caused the greatest damage to willow, but had little effect on weak growers.  相似文献   

16.
Plants respond to herbivore attack by emitting complex mixtures of volatile compounds that attract herbivore enemies, both predators and parasitoids. Here, we explore whether these mixtures provide significant value as information cues in herbivore enemy attraction. Our survey indicates that blends of volatiles released from damaged plants are frequently specific depending on the type of herbivore and its age, abundance and feeding guild. The sensory perception of plant volatiles by herbivore enemies is also specific, according to the latest evidence from studies of insect olfaction. Thus, enemies do exploit the detailed information provided by plant volatile mixtures in searching for their prey or hosts, but this varies with the diet breadth of the enemy.  相似文献   

17.
It is well known that parasitoids are attracted to volatiles emitted by host‐damaged plants; however, this tritrophic interaction may change if plants are attacked by more than one herbivore species. The larval parasitoid Cotesia flavipesCameron (Hymenoptera: Braconidae) has been used intensively in Brazil to control the sugarcane borer, Diatraea saccharalisFabricius (Lepidoptera: Pyralidae) in sugarcane crops, where Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), a non‐stemborer lepidopteran, is also a pest. Here, we investigated the ability of C. flavipes to discriminate between an unsuitable host (S. frugiperda) and a suitable host (D. saccharalis) based on herbivore‐induced plant volatiles (HIPVs) emitted by sugarcane, and whether multiple herbivory (D. saccharalis feeding on stalk + S. frugiperda feeding on leaves) in sugarcane affected the attractiveness of HIPVs to C. flavipes. Olfactometer assays indicated that volatiles of host and non‐host‐damaged plants were attractive to C. flavipes. Even though host‐ and non‐host‐damaged plants emitted considerably different volatile blends, neither naïve nor experienced wasps discriminated suitable and unsuitable hosts by means of HIPVs emitted by sugarcane. With regard to multiple herbivory, wasps innately preferred the odor blend emitted by sugarcane upon non‐host + host herbivory over host‐only damaged plants. Multiple herbivory caused a suppression of some volatiles relative to non‐host‐damaged sugarcane that may have resulted from the unaltered levels of jasmonic acid in host‐damaged plants, or from reduced palatability of host‐damaged plants to S. frugiperda. In conclusion, our study showed that C. flavipes responds to a wide range of plant volatile blends, and does not discriminate host from non‐host and non‐stemborer caterpillars based on HIPVs emitted from sugarcane. Moreover, we showed that multiple herbivory by the sugarcane borer and fall armyworm increases the attractiveness of sugarcane plants to the parasitoids.  相似文献   

18.
To increase systemic resistance to herbivory, some clonal plants transmit internal cues among clonal ramets to prevent widespread damage to genets. Sagebrush (Artemisia tridentata) (Asteraceae) is known to use volatile cues to induce resistance within and between plants (so‐called volatile communication). In the present study, we observed the extent and frequency of clonal growth in a natural sagebrush population in western North America to understand the influence of clonal growth on volatile communication. We used genetic analysis involving microsatellite markers and excavation of the root systems. In addition, we characterized the volatile profiles from the headspace of sagebrush ramets. Excavation of the root system of sagebrush plants revealed that sagebrush propagates clonally below ground and that daughter ramets grow near the mother stem. Volatiles were variable among genetically different ramets, although clonal ramets (genetically identical ramets) released similar volatiles, suggesting a genetic basis for volatile similarity. Sagebrush has been shown to be most responsive to volatiles released from artificially produced clones and suffers less herbivore damage as a result. Therefore, these results, taken into consideration together, imply that volatile communication may occur among genetically identical ramets under natural conditions, and that volatile similarity between the releaser and receiver may be recognized by the receiver and increase resistance against herbivory.  相似文献   

19.
Nitrogen-fixing rhizobia can substantially influence plant–herbivore interactions by altering plant chemical composition and food quality. However, the effects of rhizobia on plant volatiles, which serve as indirect and direct defenses against arthropod herbivores and as signals in defense-associated plant–plant and within-plant signaling, are still unstudied. We measured the release of jasmonic acid (JA)-induced volatiles of rhizobia-colonized and rhizobia-free lima bean plants (Fabaceae: Phaseolus lunatus L.) and tested effects of their respective bouquets of volatile organic compounds (VOCs) on a specialist insect herbivore (Mexican bean beetle; Coccinellidae: Epilachna varivestis Mulsant) in olfactometer choice trials. In a further experiment, we showed that VOC induction by JA reflects the plant responses to mechanical wounding and insect herbivory. Following induction with JA, rhizobia-colonized plants released significantly higher amounts of the shikimic acid-derived compounds, whereas the emission of compounds produced via the octadecanoid, mevalonate and non-mevalonate pathways was reduced. These changes affected the choice behavior of beetles as the preference of non-induced plants was much more pronounced for plants that were colonized by rhizobia. We showed that indole likely represents the causing agent for the observed repellent effects of jasmonic acid-induced VOCs of rhizobia-colonized lima bean plants. Our study demonstrates a rhizobia-triggered efficacy of induced plant defense via volatiles. Due to these findings, we interpret rhizobia as an integral part of legume defenses against herbivores.  相似文献   

20.
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9..Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号