首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Lizards in the genus Anolis have experienced adaptive radiation in the Greater Antilles, producing a suite of species morphologically adapted to use different parts of the environment. In the Lesser Antilles, adaptive radiation has not occurred, but on some islands, interpopulational variation is high and represents adaptation to different habitats. We compared the extent of morphological differentiation among Greater Antillean habitat specialists with that exhibited among populations of two species, Anolis marmoratus and A. oculatus, from the Lesser Antillean islands of Guadeloupe and Dominica. Although extensive, intraspecific divergence in the Lesser Antilles is substantially less in magnitude than the differences among habitat specialists in the Greater Antilles. All populations of A. marmoratus are most similar to Greater Antillean trunk‐crown habitat specialists, but populations of A. oculatus differ in their affinities: some are similar to trunk‐crown anoles, but others are more similar to trunk‐ground habitat specialists.  相似文献   

3.
The frog Leptodactylus validus occurs in northern South America, Trinidad and Tobago, and the southern Lesser Antilles (Grenada and St. Vincent). Mitochondrial DNA sequences were used to perform a nested clade phylogeographic analysis (NCPA), to date colonization events, and to analyze colonization patterns using on a relaxed molecular clock and coalescent simulations. L. validus originated on the mainland and first colonized Trinidad with subsequent independent colonizations of Tobago and the Lesser Antilles from Trinidad. The NCPA suggests a historical vicariant event between populations in Trinidad and Tobago from those in the Lesser Antilles. The colonization of Trinidad occurred 1 million years ago (mya) and the colonization of the Lesser Antillean islands occurred 0.4 mya. The coalescent approach supported the scenario where L. validus dispersed from Trinidad to St. Vincent and from there to Grenada, a dispersal event that could have been mediated by human introduction as recent as 1600 years ago.  相似文献   

4.
The Caribbean region includes a geologically complex mix of islands, which have served as a backdrop for some significant studies of biogeography, mostly with vertebrates. Here, we use the tropical/subtropical spider genus Selenops (Selenopidae) to obtain a finer resolution of the role of geology in shaping patterns of species diversity. We obtained a broad geographic sample from over 200 localities from both the islands and American mainland. DNA sequence data were generated for three mitochondrial genes and one nuclear gene for eleven outgroup taxa and nearly 60 selenopid species. Phylogenetic analysis of the data revealed several biogeographic patterns common to other lineages that have diversified in the region, the most significant being: (1) a distinct biogeographic break between Northern and Southern Lesser Antilles, although with a slight shift in the location of the disjunction; (2) diversification within the islands of Jamaica and Hispaniola; (3) higher diversity of species in the Greater Antilles relative to the Lesser Antilles. However, a strikingly unique pattern in Caribbean Selenops is that Cuban species are not basal in the Caribbean clade. Analyses to test competing hypotheses of vicariance and dispersal support colonization through GAARlandia, an Eocene–Oligocene land span extending from South America to the Greater Antilles, rather than over‐water dispersal. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 288–322.  相似文献   

5.
We performed a phylogenetic analysis using nuclear (RAG‐1, RAG‐2) and mitochondrial (16S) markers, a statistical Bayesian reconstruction of ancestral distribution areas and a karyological analysis on most Malagasy species of the gekkonid genus Lygodactylus. The phylogenetic analysis largely confirms major basal branching pattern of previous molecular studies, but highlights significant differences concerning both the relationships between different species groups as well as those within groups. The biogeographic analysis supports a Malagasy origin of Lygodactylus, an oversea dispersal to continental Africa and a return to Madagascar. The L. madagascariensis group (also including a new candidate species identified herein) is the most basal clade in Lygodactylus, and the sister group of a clade with all the remaining species. The second most basal clade is the L. verticillatus group, placed as the sister group of a clade comprising African and Malagasy species. The sister lineage of the L. verticillatus group originated the African radiation through an oversea dispersal out of Madagascar. Eventually, the sister lineage of the L. capensis group originated secondary dispersals from Africa to Madagascar. In Madagascar, lineage diversification in different species groups mainly occurred from southern to northern and eastern regions. Dispersal, vicariance and paleoclimatic refugia probably played a relevant role in the evolutionary history of closely related taxa and in speciation mechanisms. The cytogenetic analysis evidenced a high karyotypic variability in Lygodactylus (from 2n = 34 to 2n = 40), which is at least partly consistent with the phylogenetic relationships and the composition of the various species group. Chromosome evolution occurred independently in different lineages, mainly through a reduction in the chromosome number and starting from a putative primitive karyotype of 2n = 40 with all telocentric elements.  相似文献   

6.
The jumping pitvipers, genus Atropoides, occur at low to middle elevations throughout Middle America. Recent molecular phylogenetic analyses have included all six species of Atropoides, but only two studies have found Atropoides to be monophyletic and questions persist about relationships within the A. nummifer complex. In this study, our phylogenetic analyses of morphological data provide strong support for the monophyly of Atropoides and recover relationships within the genus that are mostly congruent with those of recent molecular studies, further supporting the evolutionary and biogeographic hypotheses proposed in those studies. Our analyses find support for a sister relationship between A. picadoi and the other Atropoides species and an A. occiduus–A. indomitus clade sister to an A. nummifer–A. mexicanus–A. olmec clade. Within the A. nummifer complex, we find A. mexicanus and A. olmec to be sister species to the exclusion of A. nummifer. We include morphological synapomorphies to support each clade within Atropoides and describe and illustrate the hemipenes of each species. In addition, we discuss the importance of morphological phylogenetics and the functionality and limitations of hemipenial data in systematics.  相似文献   

7.
In the course of a phylogenetic analysis and systematic revision ofCharianthus, it was discovered thatC. purpureus, as traditionally circumscribed, is polyphyletic, consisting of three morphologically diagnosable entities. Thus two new species,Charianthus dominicensis andC. grenadensis, are described and illustrated. Each is endemic to the Lesser Antillean island for which it is named—Dominica and Grenada, respectively.Charianthus, the only vascular plant genus endemic to the Lesser Antilles, comprises six species of nectariferous, hummingbird-pollinated shrubs and small trees.  相似文献   

8.
Blackfin tuna (Thunnus atlanticus) is a small epipelagic oceanic species known only from the western Atlantic. In Tobago, the Lesser Antilles, blackfin tuna is caught by the artisanal fishery. The diet of this species was examined during the summer of 2004 for fish landed at the Charlotteville fish market in Tobago. T. atlanticus ranged from 32 to 91 cm FL (0.7–12.4 kg). Overall numerical abundance of prey items comprised fish (48%), crustaceans (46%) and cephalopods (6%). Prey species included small pelagics such as anchovies (ranked as most important prey overall), juveniles of larger pelagics such as jacks, juveniles of fish found in coral reef communities as adults, e.g. squirrelfishes, and some mesopelagic species. The importance of major diet categories differed significantly with predator size, with fishes becoming more important and crustaceans less important with increasing size of the blackfin tuna. This study has improved our scant knowledge of the blackfin tuna diet in the Lesser Antilles.  相似文献   

9.
The rocky intertidal gastropods Agathistoma viridulum and Ahotessierianum occur from the Caribbean to southern Brazil, with a gap in the equatorial region, giving them an anti-tropical distribution. We used sequences from mitochondrial genes to elucidate the phylogeography of Aviridulum and Ahotessierianum and to infer their relationships to other species of Agathistoma. For Ahotessierianum, haplotype networks and phylogenetic analyses split samples into two distinct groups: one (Ahotessierianum) in the Caribbean region (Greater and Lesser Antilles; Venezuela: Sucre and Isla Margarita) and a new species that we describe from northeastern Brazil. For Aviridulum, genetic analyses split the samples into three groups (Caribbean, northeastern Brazil and southeastern Brazil), but genetic divergence among these was too low for them to be considered species, and morphological differences were not significant. The mtDNA tree identified two clades of eastern Pacific Agathistoma, but many lower-level relationships within Agathistoma were not well resolved, suggesting that more complete taxon sampling and additional genetic data will be needed to establish more robust relationships among Tegulinae.  相似文献   

10.
We determined the complete mitochondrial genome sequence of Rhigonema thysanophora, the first representative of Rhigonematomorpha, and used this sequence along with 57 other nematode species for phylogenetic analyses. The R. thysanophora mtDNA is 15 015 bp and identical to all other chromadorean nematode mtDNAs published to date in that it contains 36 genes (lacking atp8) encoded in the same direction. Phylogenetic analyses of nucleotide and amino acid sequence data for the 12 protein‐coding genes recovered Rhigonematomorpha as the sister group to the heterakoid species, Ascaridia columbae (Ascaridomorpha). The organization of R. thysanophora mtDNA resembles the most common pattern for the Rhabditomorpha+Ascaridomorpha+Diplogasteromorpha clade in gene order, but with some substantial gene rearrangements. This similarity in gene order is in agreement with the sequence‐based analyses that indicate a close relationship between Rhigonematomorpha and Rhabditomorpha+Ascaridomorpha+Diplogasteromorpha. These results are consistent with certain analyses of nuclear SSU rDNA for R. thysanophora and some earlier classification systems that asserted phylogenetic affinity between Rhigonematomorpha and Ascaridomorpha, but inconsistent with morphology‐based phylogenetic hypotheses that suggested a close (taxonomic) relationship between rhigonematomorphs and oxyuridomorphs (pinworms). These observations must be tempered by noting that few rhigonematomorph species have been sequenced and included in phylogenetic analyses, and preliminary studies based on SSU rDNA suggest the group is not monophyletic. Additional mitochondrial genome sequences of rhigonematids are needed to characterize their phylogenetic relationships within Chromadorea, and to increase understanding of mitochondrial genome evolution.  相似文献   

11.

The genus Stevia comprises approximately 200 species, which are distributed in North and South America, and are representative of the species diversity of the Asteraceae in the New World. We reconstructed the phylogenetic relationships using sequences of ITS and cpDNA and estimated the divergence times of the major clade of this genus. Our results suggested that Stevia originated in Mexico 7.0–7.3 million years ago (Mya). Two large clades, one with shrub species and another with herb species, were separated at about 6.6 Mya. The phylogenetic reconstruction suggested that an ancestor of Stevia was a small shrub in temperate pine–oak forests and the evolutionary change from a shrub state to a herb state occurred only once. A Brazilian clade was nested in a Mexican herb clade, and its origin was estimated to be 5.2 Mya, suggesting that the migration from North America to South America occurred after the formation of the Isthmus of Panama. The species diversity in Mexico appears to reflect the habitat diversity within the temperate pine–oak forest zone. The presence of many conspecific diploid–polyploid clades in the phylogenetic tree reflects the high frequency of polyploidization among the perennial Stevia species.

  相似文献   

12.
Acontias plumbeus has traditionally been considered a monotypic, invariable species, a fact that highly contrasts with documented examples of high phylogenetic complexity and phenotypic diversity in other members of the Acontinae. We employed mitochondrial and nuclear DNA markers to investigate genetic structuring among A. plumbeus populations and the relationship between A. plumbeus and the closely related A. poecilus. Molecular genetic analyses revealed three clades with non‐overlapping distributions: an Eastern clade, a widely distributed Northern clade, and a Southern clade that includes topotypical A. poecilus. Morphometric analyses of preserved specimens showed that Southern clade populations are comprised of individuals with absolute and proportionally smaller body sizes than their Northern and Eastern relatives. Phylogenetic affinities within A. plumbeus indicate a complex biogeographic scenario within South Africa and suggest that A. poecilus should be considered a junior synonym of A. plumbeus instead of a truly valid species.  相似文献   

13.
Inferring the evolutionary and biogeographic history of taxa occurring in a particular region is one way to determine the processes by which the biodiversity of that region originated. Tree boas of the genus Corallus are an ancient clade and occur throughout Central and South America and the Lesser Antilles, making it an excellent group for investigating Neotropical biogeography. Using sequenced portions of two mitochondrial and three nuclear loci for individuals of all recognized species of Corallus, we infer phylogenetic relationships, present the first molecular analysis of the phylogenetic placement of the enigmatic C. cropanii, develop a time-calibrated phylogeny, and explore the biogeographic history of the genus. We found that Corallus diversified within mainland South America, via over-water dispersals to the Lesser Antilles and Central America, and via the traditionally recognized Panamanian land bridge. Divergence time estimates reject the South American Caribbean-Track as a general biogeographic model for Corallus and implicate a role for events during the Oligocene and Miocene in diversification such as marine incursions and the uplift of the Andes. Our findings also suggest that recognition of the island endemic species, C. grenadensis and C. cookii, is questionable as they are nested within the widely distributed species, C. hortulanus. Our results highlight the importance of using widespread taxa when forming and testing biogeographic hypotheses in complex regions and further illustrate the difficulty of forming broadly applicable hypotheses regarding patterns of diversification in the Neotropical region.  相似文献   

14.
Although Conraua goliath is well known as the largest living frog species, the diversity and evolution of the genus Conraua across sub-Saharan Africa remain poorly understood. We present multilocus phylogenetic analyses of the six currently recognized species that provide insights into divergence times, biogeography, body size evolution and undescribed species. An analysis of divergence times demonstrates that crown-group Conraua arose some time during the latest Oligocene to mid-Miocene followed by divergence into major lineages in the mid-Miocene that may reflect the fragmentation of widespread tropical forests in Africa that began at this time. We find three pairs of sister species, C. crassipes + C. beccarii, C. alleni + C. derooi and C. goliath + C. robusta, each of which diverged during the Miocene. These relationships reject phylogenetic hypotheses based solely on biogeography as the geographically peripheral C. beccarii from north-eastern Africa is nested within western African species and the Central African species do not form a clade. Our species delimitation analyses provide support for undescribed species in C. alleni, C. beccarii and C. derooi, and possibly C. crassipes, suggesting that the current taxonomy substantially underestimates species diversity. There is no clear directional trend of either increasing or decreasing body size in Conraua and the three largest species do not form a clade. With a robust phylogenetic hypothesis in hand, further field-based studies are needed to understand the evolution of morphology and life history in this charismatic African anuran clade.  相似文献   

15.
The Anolis lizards of the eastern Caribbean islands are parasitized by several species of malaria parasites (Plasmodium). Here I focus on two species of Plasmodium, using molecular data (mitochondrial cytochrome b sequences) to recover the phylogeography of the parasites throughout the Lesser Antilles and Puerto Rico. The two parasites were originally described as a single species, P. azurophilum, which infects both red and white blood cells. Here the two species are termed P. azurophilum Red and P. azurophilum White based on their host cell type. Six haplotypes were found in 100 infections sequenced of P. azurophilum Red and six in 45 infections of P. azurophilum White. Nested clade analysis revealed a significant association of geographical location and clades as well as a pattern of past fragmentation of parasite populations. This is consistent with the hypothesis that vector‐borne parasites such as malaria may be subject to frequent local extinctions and recolonizations. Comparison of the phylogeography of the lizard and parasites shows only weak concordance; that is, the parasites colonized the lizards in the islands, but dispersal events between islands via vectors or failed lizard colonizations were present. The two parasites had different histories, P. azurophilum Red colonized the islands from both the north and south, and P. azurophilum White originated in the central Lesser Antilles, probably from P. azurophilum Red, then moved to both north and south. This is the first study to examine the biogeography of a pair of sibling species of vector‐borne parasites within an island archipelago system.  相似文献   

16.
The phylogeography of the freshwater snail Biomphalaria glabrata remains poorly known, although this species is the major vector of schistosomiasis in the New World. It was here investigated in South America and the Lesser Antilles, based on partial mitochondrial large ribosomal subunit (16S rDNA) and nuclear internal transcribed spacer-2 (ITS-2) gene sequences. Sampling included 17 populations from a large part of the current geographic range of the species (Brazil, Venezuela and Lesser Antilles). Substantial variability was detected, as well as a high amount of phylogenetically informative signal. The molecular phylogeny inferred splits B. glabrata into Northern and Southern clades separated by the Amazon river, and may even suggest a supra-specific status for B. glabrata. Brazilian populations were the most diverse and appeared basal to the other populations. Venezuelan haplotypes formed a single clade, albeit not strongly supported. Two Venezuelan haplotypes appear rather similar to Brazilian haplotypes. Similarly, Lesser Antilles haplotypes clustered in the same monophyletic clade, which suggests that the recent colonisation of the Antilles has a northern South American origin. However, the estimated divergence time between Antilles and Venezuelan sequences is extremely large (conservatively higher than 10(5) years). These results are discussed in the light of (i) phylogeographic patterns at South American scale, and (ii) recurrent introduction of molluscs, especially in the Antilles, as a consequence of human activities.  相似文献   

17.
18.
We confirmed the monophyly of the Agaraceae based on phylogenetic analyses of six mitochondrial and six chloroplast gene sequences from Agarum, Costaria, Dictyoneurum, and Thalassiophyllum species, as well as representative species from other laminarialean families. However, the genus Agarum was paraphyletic, comprising two independent clades, A. clathratum/A. turneri and A. fimbriatum/A. oharaense. The latter clade was genetically most closely related to Dictyoneurum spp., and morphologically, the species shared a flattened stipe bearing fimbriae (potential secondary haptera) in the mid‐ to upper portion. The phylogenetic position of Thalassiophyllum differed between the two datasets: in the chloroplast gene phylogeny, Thalassiophyllum was included in the A. clathratum/A. turneri clade, but in the mitochondrial gene phylogeny, it formed an independent clade at the base of the Agaraceae, the same position it took in the phylogeny when the data from both genomes were combined despite a larger number of bp being contributed by the chloroplast gene sequences. Considering the remarkable morphological differences between Thalassiophyllum and other Agaraceae, and the molecular support, we conclude that Thalassiophyllum should be reinstated as an independent genus. Dictyoneurum reticulatum was morphologically distinguishable from D. californicum due to its midrib, but because of their close genetic relationship, further investigations are needed to clarify species‐level taxonomy. In summary, we propose the establishment of a new genus Neoagarum to accommodate A. fimbriatum and A. oharanese and the reinstatement of the genus Thalassiophyllum.  相似文献   

19.
Restriction site‐associated DNA sequencing (RAD‐seq) was used to illuminate the genetic relationships among Eriobotrya species. The raw data were filtered, and 221 million clean reads were used for further analysis. A total of 1,983,332 SNPs were obtained from 23 Eriobotrya species and two relative genera. We obtained similar results by neighbor‐joining and maximum likelihood phylogenetic trees. All Eriobotrya plants grouped together into a big clade, and two out‐groups clustered together into a single or separate clade. Chinese and Vietnam accessions were distributed throughout the dendrogram. There was nonsignificant correlation between genotype and geographical distance. However, clustering results were correlated with leaf size to some extent. The Eriobotrya species could be divided into following three groups based on leaf size and phylogenetic analysis: group A and group B comprised of small leaves with <10 cm length except E. stipularis (16.76 cm), and group C can be further divided into two subgroups, which contained medium‐size leaves with a leaf length ranged from 10 to 20 cm and a leaf length bigger than 20 cm.  相似文献   

20.
ABSTRACT

The Caribbean blepharicerid fauna comprises three described species: Paltostoma palominoi Hogue and Garces, 1990, found in eastern Cuba; P. agyrocincta Curran, 1927, widespread in Puerto Rico; and P. schineri Williston, 1896, which occupies most major islands of the Lesser Antilles. In this paper, we describe P. portoricensis Hogue and Courtney, sp. n., a second species from Puerto Rico. We also provide keys to adults, pupae, and larvae of known Caribbean species, re-describe P. argyrocincta and P. schineri, and present a brief discussion of the bionomics and phylogenetic affinities of the net-winged midge fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号