首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interaction of the cell‐penetrating peptide (CPP) cysteine‐transportan (Cys‐TP) with model lipid membranes was examined by spin‐label electron paramagnetic resonance (EPR). Membranes were labeled with lipophilic spin probes and the influence of Cys‐TP on membrane structure was studied. The influence of Cys‐TP on membrane permeability was monitored by the reduction of a liposome‐trapped water‐soluble spin probe. Cys‐TP caused lipid ordering in membranes prepared from pure dimyristoylphosphatidylcholine (DMPC) and in DMPC membranes with moderate cholesterol concentration. In addition, Cys‐TP caused a large increase in permeation of DMPC membranes. In contrast, with high cholesterol content, at which model lipid membranes are in the so‐called liquid‐ordered phase, no effect of Cys‐TP was observed, either on the membrane structure or on the membrane permeability. The interaction between Cys‐TP and the lipid membrane therefore depends on the lipid phase. This could be of great importance for understanding of the CPP–lipid interaction in laterally heterogeneous membranes, while it implies that the CPP–lipid interaction can be different at different points along the membrane. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

3.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.  相似文献   

4.
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

5.
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.  相似文献   

6.
Point mutations in proteins can have different effects on protein stability depending on the mechanism of unfolding. In the most interesting case of I27, the Ig‐like module of the muscle protein titin, one point mutation (Y9P) yields opposite effects on protein stability during denaturant‐induced “global unfolding” versus “vectorial unfolding” by mechanical pulling force or cellular unfolding systems. Here, we assessed the reason for the different effects of the Y9P mutation of I27 on the overall molecular stability and N‐terminal unraveling by NMR. We found that the Y9P mutation causes a conformational change that is transmitted through β‐sheet structures to reach the central hydrophobic core in the interior and alters its accessibility to bulk solvent, which leads to destabilization of the hydrophobic core. On the other hand, the Y9P mutation causes a bend in the backbone structure, which leads to the formation of a more stable N‐terminal structure probably through enhanced hydrophobic interactions.  相似文献   

7.
Background: We examine the effect of eradicating Helicobacter in idiopathic parkinsonism (IP). Marked deterioration, where eradication‐therapy failed, prompted an interim report in the first 20 probands to reach de‐blinding. The null‐hypothesis, “eradication has no effect on principal outcome, mean stride length at free‐walking speed,” was rejected. We report on study completion in all 30 who had commenced post‐treatment assessments. Methods: This is a randomized, placebo‐controlled, parallel‐group efficacy study of eradicating biopsy‐proven (culture and/or organism on histopathology) Helicobacter pylori infection on the time course of facets of IP, in probands taking no, or stable long‐t½, anti‐parkinsonian medication. Persistent infection at de‐blinding (scheduled 1‐year post‐treatment) led to open active eradication‐treatment. Results: Stride length improved (73 (95% CI 14–131) mm/year, p = .01) in favor of “successful” blinded active over placebo, irrespective of anti‐parkinsonian medication, and despite worsening upper limb flexor rigidity (237 (57–416) Nm × 10?3/year, p = .01). This differential effect was echoed following open active, post‐placebo. Gait did not deteriorate in year 2 and 3 post‐eradication. Anti‐nuclear antibody was present in all four proven (two by molecular microbiology only) eradication failures. In the remainder, it marked poorer response during the year after eradication therapy, possibly indicating residual “low‐density” infection. We illustrate the importance of eradicating low‐density infection, detected only by molecular microbiology, in a proband not receiving anti‐parkinsonian medication. Stride length improved (424 (379–468) mm for 15 months post‐eradication, p = .001), correction of deficit continuing to 3.4 years. Flexor rigidity increased before hydrogen‐breath‐test positivity for small intestinal bacterial overgrowth (208 (28–388) Nm × 10?3, p = .02), increased further during (171 (67–274), p = .001) (15–31 months), and decreased (136 (6–267), p = .04) after restoration of negativity (32–41 months). Conclusion: Helicobacter is an arbiter of progression, independent of infection‐load.  相似文献   

8.
Protein secretion is a major contributor to Gram‐negative bacterial virulence. Type Vb or two‐partner secretion (TPS) pathways utilize a membrane bound β‐barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C‐proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N‐proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site‐specific mutants of HpmA265. By correlating the effect of individual site‐specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C‐terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C‐terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N‐proximal polar core subdomain.  相似文献   

9.
The crystal structure of an N‐terminal β‐strand‐swapped consensus‐derived tenascin FN3 alternative scaffold has been determined. A comparison with the unswapped structure reveals that the side chain of residue F88 orients differently and packs more tightly with the hydrophobic core of the domain. Dimer formation also results in the burial of a hydrophobic patch on the surface of the domain. Thus, it appears that tighter packing of F88 in the hydrophobic core and burial of surface hydrophobicity provide the driving forces for the N‐terminal β‐strand swapping, leading to the formation of a stable compact dimer. Proteins 2014; 82:1527–1533. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The influenza A M2 protein is a 97‐residue integral membrane protein involved in viral budding and proton conductance. Although crystal and NMR structures exist of truncated constructs of the protein, there is disagreement between models and only limited structural data are available for the full‐length protein. Here, the structure of the C‐terminal juxtamembrane region (sites 50–60) is investigated in the full‐length M2 protein using site‐directed spin‐labeling electron paramagnetic resonance (EPR) spectroscopy in lipid bilayers. Sites 50–60 were chosen for study because this region has been shown to be critical to the role the M2 protein plays in viral budding. Continuous wave EPR spectra and power saturation data in the presence of paramagnetic membrane soluble oxygen are consistent with a membrane surface associated amphipathic helix. Comparison between data from the C‐terminal juxtamembrane region in full‐length M2 protein with data from a truncated M2 construct demonstrates that the line shapes and oxygen accessibilities are remarkably similar between the full‐length and truncated form of the protein.  相似文献   

11.
Free radical activity towards superoxide anion radical (), hydroxyl radical (HO?) and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) of a series of novel thiazolidine‐2,4‐dione derivatives (TSs) was examined using chemiluminescence, electron paramagnetic resonance (EPR) and EPR spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was applied as the spin trap. Superoxide radical was produced in the potassium superoxide/18‐crown‐6 ether dissolved in dimethyl sulfoxide. Hydroxyl radical was generated in the Fenton reaction (Fe(II) + H2O2. It was found that TSs showed a slight scavenging effect (15–38% reduction at 2.5 mmol/L concentration) of the DPPH radical and a high scavenging effect of (41–88%). The tested compounds showed inhibition of HO? ‐dependent DMPO‐OH spin adduct formation (the amplitude of EPR signal decrease ranged from 20 to 76% at 2.5 mmol/L concentration. Our findings present new group compounds of relatively high reactivity towards free radicals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The polyproline‐II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and “unstructured” denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)‐octahydroindole‐2‐carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline‐II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan‐1‐ol/water partitioning and inclusion in detergent micelles of the oligo‐Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo‐Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline‐II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.  相似文献   

14.

Objective

Little work has explored the effect of weight‐related terms on treatment initiation; only one study has investigated weight‐related terms and the psychological constructs associated with treatment uptake. The present study examines the effects of four common weight‐related terms on treatment initiation and the moderating effect of weight bias internalization.

Methods

Adult participants with overweight and obesity (n = 436) were recruited online and asked to read three vignettes describing clinical encounters; the weight‐related term (i.e., “weight,” “BMI,” “obesity,” or “fat”) was varied randomly. Participants then reported self‐efficacy, cognitive and emotional illness beliefs about obesity (i.e., illness perception), and interest in a weight loss program.

Results

The term “obesity” resulted in the greatest self‐efficacy and perceived control over obesity. “Fat” resulted in the least illness coherence (i.e., understanding of obesity). Weight bias internalization did not moderate the effect of term on self‐efficacy, nor did it moderate illness perception. No differences in weight loss program enrollment were observed.

Conclusions

Use of the term “obesity” may promote patients’ perceived control and self‐efficacy. Use of “fat” should be avoided. Results suggest that, despite patient and clinician preference for euphemistic weight terms, use of clinical language such as “obesity” may perform better in provider intervention.
  相似文献   

15.
A “double‐hydrophobic” elastin‐like triblock polypeptide GPG has been constructed by mimicking the localization of proline‐ and glycine‐rich hydrophobic domains of native elastin, a protein that provides elasticity and resilience to connective tissues. In this study, the effects of trifluoroethanol (TFE), an organic solvent that strongly affects secondary structures of polypeptides on self‐assembly of GPG in aqueous solutions were systematically studied. Beaded nanofiber formation of GPG , where nanoparticles are initially formed by coacervation of the polypeptides followed by their connection into one‐dimensional nanostructures, is accelerated by the addition of TFE at the concentrations up to 30% (v/v), whereas aggregates of nanoparticles are formed at 60% TFE. The concentration‐dependent assembly pattern discussed is based on the influence of TFE on the secondary structures of GPG . Well‐defined nanofibers whose diameter and secondary structures are controlled by TFE concentration may be ideal building blocks for constructing bioelastic materials in tissue engineering. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 175–185, 2015.  相似文献   

16.
Recent investigations have revealed 1) that the isochores of the human genome group into two super‐families characterized by two different long‐range 3D structures, and 2) that these structures, essentially based on the distribution and topology of short sequences, mold primary chromatin domains (and define nucleosome binding). More specifically, GC‐poor, gene‐poor isochores are low‐heterogeneity sequences with oligo‐A spikes that mold the lamina‐associated domains (LADs), whereas GC‐rich, gene‐rich isochores are characterized by single or multiple GC peaks that mold the topologically associating domains (TADs). The formation of these “primary TADs” may be followed by extrusion under the action of cohesin and CTCF. Finally, the genomic code, which is responsible for the pervasive encoding and molding of primary chromatin domains (LADs and primary TADs, namely the “gene spaces”/“spatial compartments”) resolves the longstanding problems of “non‐coding DNA,” “junk DNA,” and “selfish DNA” leading to a new vision of the genome as shaped by DNA sequences.  相似文献   

17.
Sarco(endo)plasmic reticulum Ca2+‐ATPase transports two Ca2+ per ATP‐hydrolyzed across biological membranes against a large concentration gradient by undergoing large conformational changes. Structural studies with X‐ray crystallography revealed functional roles of coupled motions between the cytoplasmic domains and the transmembrane helices in individual reaction steps. Here, we employed “Motion Tree (MT),” a tree diagram that describes a conformational change between two structures, and applied it to representative Ca2+‐ATPase structures. MT provides information of coupled rigid‐body motions of the ATPase in individual reaction steps. Fourteen rigid structural units, “common rigid domains (CRDs)” are identified from seven MTs throughout the whole enzymatic reaction cycle. CRDs likely act as not only the structural units, but also the functional units. Some of the functional importance has been newly revealed by the analysis. Stability of each CRD is examined on the morphing trajectories that cover seven conformational transitions. We confirmed that the large conformational changes are realized by the motions only in the flexible regions that connect CRDs. The Ca2+‐ATPase efficiently utilizes its intrinsic flexibility and rigidity to response different switches like ligand binding/dissociation or ATP hydrolysis. The analysis detects functional motions without extensive biological knowledge of experts, suggesting its general applicability to domain movements in other membrane proteins to deepen the understanding of protein structure and function. Proteins 2015; 83:746–756. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Periplasmic heme‐binding proteins (PBPs) in Gram‐negative bacteria are components of the heme acquisition system. These proteins shuttle heme across the periplasmic space from outer membrane receptors to ATP‐binding cassette (ABC) heme importers located in the inner‐membrane. In the present study, we characterized the structures of PBPs found in the pathogen Burkholderia cenocepacia (BhuT) and in the thermophile Roseiflexus sp. RS‐1 (RhuT) in the heme‐free and heme‐bound forms. The conserved motif, in which a well‐conserved Tyr interacts with the nearby Arg coordinates on heme iron, was observed in both PBPs. The heme was recognized by its surroundings in a variety of manners including hydrophobic interactions and hydrogen bonds, which was confirmed by isothermal titration calorimetry. Furthermore, this study of 3 forms of BhuT allowed the first structural comparison and showed that the heme‐binding cleft of BhuT adopts an “open” state in the heme‐free and 2‐heme‐bound forms, and a “closed” state in the one‐heme‐bound form with unique conformational changes. Such a conformational change might adjust the interaction of the heme(s) with the residues in PBP and facilitate the transfer of the heme into the translocation channel of the importer.  相似文献   

19.
Purified preparations of the recombinant b′x domain fragment of human protein‐disulphide isomerase (PDI), which are homogeneous by mass spectrometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis, comprise more than one species when analyzed by ion‐exchange chromatography and nondenaturing polyacrylamide gel electrophoresis. These species were resolved and shown to be monomer and dimer by analytical ultracentrifugation and analytical size‐exclusion chromatography. Spectroscopic properties indicate that the monomeric species corresponds to the “capped” conformation observed in the x‐ray structure of the I272A mutant of b′x (Nguyen, Wallis, Howard, Haapalainen, Salo, Saaranen, Sidhu, Wierenga, Freedman, Ruddock, and Williamson, J Mol Biol 2008;383:1144‐1155) in which the x region binds to a hydrophobic patch on the surface of the b′ domain; conversely, the dimeric species has an “open” or “uncapped” conformation in which the x region does not bind to this surface. The larger bb′x fragment of human PDI shows very similar behavior to b′x and can be resolved into a capped monomeric species and an uncapped dimer. Preparations of recombinant b′ domain of human PDI and of the bb′ domain pair are found exclusively as dimers. Full‐length PDI is known to comprise a mixture of monomeric and dimeric species, whereas the isolated a , b , and a′ domains of PDI are found exclusively as monomers. These results show that the b′ domain of human PDI tends to form homodimers—both in isolation and in other contexts—and that this tendency is moderated by the adjacent x region, which can bind to a surface patch on the b′ domain.  相似文献   

20.
Kroncke BM  Horanyi PS  Columbus L 《Biochemistry》2010,49(47):10045-10060
Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed α-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i ± 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact with the protein surface. Combined, the results provide a starting point for determining a motional model for R1 on membrane proteins, allowing quantification of nitroxide dynamics in the aliphatic environment of detergent and lipids. In addition, initial contributions to a rotamer library of R1 on membrane proteins are provided, which will assist in reliably modeling the R1 conformational space for pulsed dipolar EPR and NMR paramagnetic relaxation enhancement distance determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号