首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The widespread use of herbicides and antibiotics for selection of transgenic plants has not been very successful with regard to commercialization and public acceptance. Hence, alternative selection systems are required. In this study, we describe the use of ipt, the bacterial gene encoding the enzyme isopentenyl transferase from Agrobacterium tumefaciens, as a positive selectable marker for plastid transformation. A comparison between the traditional spectinomycin‐based aadA selection system and the ipt selection system demonstrated that selection of transplastomic plants on medium lacking cytokinin was as effective as selection on medium containing spectinomycin. Proof of principle was demonstrated by transformation of the kasIII gene encoding 3‐ketoacyl acyl carrier protein synthase III into tobacco plastids. Transplastomic tobacco plants were readily obtained using the ipt selection system, and were phenotypically normal despite over‐expression of isopentenyl transferase. Over‐expression of KASIII resulted in a significant increase in 16:0 fatty acid levels, and a significant decrease in the levels of 18:0 and 18:1 fatty acids. Our study demonstrates use of a novel positive plastid transformation system that may be used for selection of transplastomic plants without affecting the expression of transgenes within the integrated vector cassette or the resulting activity of the encoded protein. This system has the potential to be applied to monocots, which are typically not amenable to traditional antibiotic‐based selection systems, and may be used in combination with a negative selectable marker as part of a two‐step selection system to obtain homoplasmic plant lines.  相似文献   

2.
Alternative selection systems for plant transformation are especially valuable in clonal crops, such as potato (Solanum tuberosum L.), to pyramid transgenes into the same cultivar by successive transformation events. We have modified the pGPTV series of binary vectors to construct pMOA1 to pMOA5, resulting in a series of essentially identical binary vectors except for the presence of different selectable marker genes. These selectable marker genes are tightly inserted between the left and right T-DNA borders and confer resistance to kanamycin (nptII), hygromycin (hpt), methotrexate (dhfr), phosphinothricin (bar), or phleomycin (ble). The T-DNA of all the vectors is based on the minimal features necessary for plant transformation, with no extraneous DNA segments that may be unacceptable to regulatory authorities for general release of transgenic plants. A series of unique restriction sites exists between the right border and each selectable marker gene for subsequent insertion of useful genes. We have also developed improved culture procedures for potato transformation and used the pMOA1 to pMOA5 binary vectors to define stringent selection conditions for each marker gene. Combining these advances improved the frequency of recovering transformed potato plants while maintaining a low frequency of escapes. The relative efficiency of recovering transgenic potato lines with each selectable marker gene can be summarised as: kanamycin resistance>hygromycin resistance>phosphinothricin resistance>phleomycin resistance>methotrexate resistance.  相似文献   

3.
Sulfonamide resistance gene for plant transformation   总被引:7,自引:0,他引:7  
The sulfonamide resistance gene from plasmid R46 encodes for a mutated dihydropteroate synthase insensitive to inhibition by sulfonamides. Its coding sequence was fused to the pea ribulose bisphosphate carboxylase/oxygenase transit peptide sequence. Incubation of isolated chloroplasts with the fusion protein synthesised in vitro, showed that the bacterial enzyme was transported to the chloroplast stroma and processed into a mature form. Expression of the gene fusion in transgenic plants resulted in a high level of resistance to sulfonamides. Direct selection of transformed shoots on leaf explants was efficient using sulfonamides as sole selective agents. Transformed shoots rooted normally on sulfonamides at concentrations toxic for untransformed ones. Sulfonamide resistance was transmitted to the progeny of transformed plants as a single Mendelian dominant character. These results demonstrate that this chimeric gene can be used as an efficient and versatile selectable marker for plant transformation.  相似文献   

4.
A selectable marker gene facilitates the detection of genetically modified plant cells during transformation experiments. So far, these marker genes are almost exclusively of two types, conferring either antibiotic resistance or herbicide tolerance. However, more selectable markers must be developed as additional transgenic traits continue to be incorporated into transgenic plants. Here, we used mercury resistance, conferred by the organomercurial lyase gene, as a selectable marker for transformation. The merB gene fromStreptococcus aureus was modified for plant expression and transferred to a hybrid poplar(Populus alba xPopulus glandulosa), using the stem segment-agrobacteria co-cultivation method. The transformed cells were selected on a callus-inducing medium containing as little as 1 μM methylmercury. Subsequent plant regeneration was done in the presence of methylmercury. Resistance to Hg was stably maintained in mature plants after two years of growth in the nursery. We suggest that this gene could serve as an excellent selectable marker for plant transformation.  相似文献   

5.
Summary We describe in this paper the construction and use of a set of novel Ti plasmid-derived vectors that can be used to produce transgenic plants. These vectors are based on one of two strategies: 1) double recombination into the wild-type Ti plasmid of genetic information flanked by two T-DNA fragments on a wide-host range plasmid; 2) the binary vector strategy. The vector based on the double recombination principle contains a kanamycin resistance gene for use as a plant selectable marker, a polylinker for the insertion of foreign genes, and a nopaline synthase gene. The vector was constructed such that a disarmed T-DNA results from the double recombination event. The binary vector combines several advantageous features including an origin of replication that is stable in Agrobacterium in the absence of selection, six unique sites for insertion of foreign genes, an intact nopaline synthase gene, and a kanamycin resistance marker for selection of transformed plant cells. All of these vectors have been used to produce tobacco plants transformed with a variety of foreign genes.  相似文献   

6.
Chloroplast transformation remains a demanding technique and is still restricted to relatively few plant species. The limited availability of selectable marker genes and the lack of selection markers that would be universally applicable to all plant species represent some of the most serious technical problems involved in extending the species range of plastid transformation. Here we report the development of the chloramphenicol acetyltransferase gene cat as a new selectable marker for plastid transformation. We show that, by selecting for chloramphenicol resistance, tobacco chloroplast transformants are readily obtained. Transplastomic lines quickly reach the homoplasmic state (typically in one additional regeneration round), accumulate the chloramphenicol acetyltransferase enzyme to high levels and transmit their plastid transgenes maternally into the next generation. No spontaneous antibiotic resistance mutants appear upon chloramphenicol selection. Several lines of evidence support the assumption that plant mitochondria are also sensitive to chloramphenicol suggesting that the chloramphenicol acetyltransferase may be a good candidate selectable marker for plant mitochondrial transformation.  相似文献   

7.
Transgenic tobacco plants expressing three different forms of Arabidopsis plant peptide deformylase ( At DEF1.1, At DEF1.2 and At DEF2; EC 3.5.1.88) were evaluated for resistance to actinonin, a naturally occurring peptide deformylase inhibitor. Over-expression of either AtDEF1.2 or AtDEF2 resulted in resistance to actinonin, but over-expression of AtDEF1.1 did not. Immunological analyses demonstrated that At DEF1.2 and At DEF2 enzymes were present in both stromal and thylakoid fractions in chloroplasts, but At DEF1.1 was localized to mitochondria. The highest enzyme activity was associated with stromal At DEF2, which was approximately 180-fold greater than the level of endogenous activity in the host plant. Resistance to actinonin cosegregated with kanamycin resistance in Atdef1.2-D and Atdef2-D transgenic plants. Here, we demonstrate that the combination of plant peptide deformylase and peptide deformylase inhibitors may represent a native gene selectable marker system for chloroplast and nuclear transformation vectors, and also suggest plant peptide deformylase as a potential broad-spectrum herbicide target.  相似文献   

8.
9.
Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus‐based virus‐induced gene silencing (VIGS) approach, involving an Agrobacterium‐mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic‐mediated approach of inoculation of virus‐encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down‐regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45–90%), similar to results obtained via agro‐transformation. Thus, the biolistic‐based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium‐based approach, e.g. when difficulties arise with agro‐inoculations or when Agrobacterium‐free procedures are required to avoid plant defence responses.  相似文献   

10.
Nicotianamine (NA) is a non‐protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S‐adenosyl‐L‐methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up‐regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat.  相似文献   

11.
Precise genome engineering via homologous recombination (HR)‐mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR‐mediated GT is an extremely rare event, positive–negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re‐integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)‐tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants.  相似文献   

12.
Insecticidal protein gene CrylA (c) from Bacillus thuringiensis (Bt toxin gene) was placed under the control of psbA5'- and 3'- regulatory regions of rice (Oryza sativa L. ) chloroplast to construct Bt expression cassette, which was ligated with selectable marker aadA cassette and homology regions of tobacco ( Nicotiana tabacum L. ) chloroplast genome to generate transformation vector pTRS8. Leaves of tobacco plant cv. NC89 were transformed with particle bombardment method, plastid transformants were selected by their resistance to 500 mg/L of spectinomycin. Some transplastomic plants were toxic to the third-instar larvae of Helicoverpa zea, and the growth of the survived insects was remarkably inhibited. Genetic and molecular analyses of T1 and T2 progenies of plants with highly efficient insect resistance showed that Bt toxin gene had been inherited in progenies, and spectinomycin resistance was inherited maternally.  相似文献   

13.
Many eukaryotic green algae possess biophysical carbon‐concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H14CO3 uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild‐type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species.  相似文献   

14.
建立了一种利用双T-DNA载体培育无选择标记转基因植物的方法.通过体外重组构建了双T-DNA双元载体pDLBRBbarm.载体中,选择标记nptⅡ基因和另一代表外源基因的bar基因分别位于2个独立的T-DNA.利用农杆菌介导转化烟草(Nicotiana tabacum L.),在获得的转化植株中,同时整合有nptⅡ基因和bar基因的频率为59.2%.对4个同时整合有nptⅡ和bar基因植株自交获得的T1代株系进行检测分析,发现在3个T1代株系2个T-DNA可以发生分离,其中约19.5%的转基因T1代植株中只存在bar基因而不带选择标记nptⅡ.这一结果说明双T-DNA载体系统能有效地用于培育无选择标记的转基因植物.研究还利用位于2个不同载体上的nptⅡ基因与 bar基因通过农杆菌介导共转化烟草,获得共转化植株的频率为20.0%~47.4%,低于使用双T-DNA转化的共转化频率.  相似文献   

15.
16.
Antisense oligodeoxynucleotide (asODN) inhibition was developed in the 1970s, and since then has been widely used in animal research. However, in plant biology, the method has had limited application because plant cell walls significantly block efficient uptake of asODN to plant cells. Recently, we have found that asODN uptake is enhanced in a sugar solution. The method has promise for many applications, such as a rapid alternative to time‐consuming transgenic studies, and high potential for studying gene functionality in intact plants and multiple plant species, with particular advantages in evaluating the roles of multiple gene family members. Generation of transgenic plants relies on the ability to select transformed cells. This screening process is based on co‐introduction of marker genes into the plant cell together with a gene of interest. Currently, the most common marker genes are those that confer antibiotic or herbicide resistance. The possibility that traits introduced by selectable marker genes in transgenic field crops may be transferred horizontally is of major public concern. Marker genes that increase use of antibiotics and herbicides may increase development of antibiotic‐resistant bacterial strains or contribute to weed resistance. Here, we describe a method for selection of transformed plant cells based on asODN inhibition. The method enables selective and high‐throughput screening for transformed cells without conferring new traits or functions to the transgenic plants. Due to their high binding specificity, asODNs may also find applications as plant‐specific DNA herbicides.  相似文献   

17.
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.  相似文献   

18.
The salt-tolerance gene rstB under the control of the cauliflower mosaic virus 35S promoter was used as a selectable marker gene in the Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum cv. Xanthi). The selective agent for plant regeneration was tolerance to 170 mM sodium chloride. The highest selection efficiency was 83.3%. No obvious differences in selection efficiencies were observed when those obtained using the standard selectable marker gene hpt and a selection regime of 10 mg l−1 hygromycin. Transgenic events were confirmed by PCR, Southern blot, RT-PCR and green fluorescent protein studies. The rstB transgenic plants showed improved salt tolerance and a normal phenotype. Based on these results, we suggest that the rstB gene may be used as a promising selectable marker and an alternative to the antibiotic- or herbicide-resistance genes in plant transformation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Reverse-genetic studies of chloroplast genes in the green alga Chlamydomonas reinhardtii have been hampered by the paucity of suitable selectable markers for chloroplast transformation. We have constructed a series of vectors for the targeted insertion and expression of foreign genes in the Chlamydomonas chloroplast genome. Using these vectors we have developed a novel selectable marker based on the bacterial gene aphA-6, which encodes an aminoglycoside phosphotransferase. The aphA-6 marker allows direct selection for transformants on medium containing either kanamycin or amikacin. The marker can be used to inactivate or modify specific chloroplast genes, and can be used as a reporter of gene expression. The availability of this marker now makes possible the serial transformation of the chloroplast genome of Chlamydomonas. Received: 26 October 1999 / Accepted: 28 December 1999  相似文献   

20.
Antibiotic and herbicide resistance genes are currently the most frequently used selectable marker genes for plant research and crop development. However, the use of antibiotics and herbicides must be carefully controlled because the degree of susceptibility to these compounds varies widely among plant species and because they can also affect plant regeneration. Therefore, new selectable marker systems that are effective for a broad range of plant species are still needed. Here, we report a simple and inexpensive system based on providing transgenic plant cells the capacity to convert a nonmetabolizable compound (phosphite, Phi) into an essential nutrient for cell growth (phosphate) trough the expression of a bacterial gene encoding a phosphite oxidoreductase (PTXD). This system is effective for the selection of Arabidopsis transgenic plants by germinating T0 seeds directly on media supplemented with Phi and to select transgenic tobacco shoots from cocultivated leaf disc explants using nutrient media supplemented with Phi as both a source of phosphorus and selective agent. Because the ptxD/Phi system also allows the establishment of large‐scale screening systems under greenhouse conditions completely eliminating false transformation events, it should facilitate the development of novel plant transformation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号