首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triterpenes are thirty‐carbon compounds derived from the universal five‐carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large‐scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic‐targeting strategy. Plastid‐targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid‐targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.  相似文献   

2.
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm‐expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch‐free background and with the wild‐type plants. Each of the maize‐derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more‐than‐trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.  相似文献   

3.
The bacterial gene mtlD, which encodes mannitol 1-phosphate dehydrogenase (E. C. 1. 1. 1. 17), was transformed into Arabidopsis thaliana and expressed under control of the CaMV 35S promoter. MtlD-transformants accumulated mannitol, a sugar alcohol that is not normally found in Arabidopsis. Amounts of soluble carbohydrates, sucrose, glucose, fructose, myo-inositol and mannitol were determined in different tissues of wild-type and transgenic plants. We estimated that less than 1& of the carbon assimilated was converted into mannitol by the transgenic plants. The establishment of individual transformed lines (after self-crossing three times) resulted in high and low mannitol-producing lines which were stably maintained. The presence of mannitol did not alter plant appearance or growth habit. When MtlD-expressing seeds and control seeds (T3 generation) were imbibed with solutions containing NaCl (range 0 to 400 mol m?3), transgenic seeds containing mannitol germinated in medium supplemented with up to 400 mol m?3 NaCl, while control seeds ceased germination at 100 mol m?3 NaCl. It is doubtful whether the ability to germinate in high salt was a result of an osmotic effect exerted by elevated levels of mannitol, considering that mannitol concentrations were in the mol m?3 range in seeds. A specific effect of polyols, for example on the integrity of subcellular membranes or enzymes, cannot be excluded.  相似文献   

4.
Availability of plant‐specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measured in vitro, often under non‐physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximal in vivo catalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome‐b6f complex, ATP‐citrate synthase, sucrose‐phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition‐specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements from Arabidopsis thaliana rosette with and fluxes through canonical pathways in a constraint‐based model of leaf metabolism. In comparison to findings in Escherichia coli, we demonstrate weaker concordance between the plant‐specific in vitro and in vivo enzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximal in vivo catalytic rates, and available quantitative metabolomics data are below reported values and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome‐wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation.  相似文献   

5.
新型可再生工业用油脂的代谢工程   总被引:2,自引:0,他引:2  
植物种子油是一种可再生资源,亦用作生物燃油和化学工业原料. 一些野生植物能高水平合成积累羟化、环氧化和共轭脂肪酸等具有重要工业应用价值的特异脂肪酸.催化这些特异脂肪酸合成的酶主要是类脂肪酸去胞和酶2(类FAD2). 由特异脂肪酸合成到三酰基甘油脂 (TAG) 形成还需要酰基转移酶 (如DGAT) 的参与. 在油料作物种子中表达类FAD2酶及其相关基因(如DGAT),已培育出了能合成积累一定含量特异脂肪酸的工程油料品系,为基于农作物生产高附加值工业用油脂开辟了新途径. 本文论述了参与特异脂肪酸生物合成途径的关键酶基因、油料作物代谢工程策略,以及应用工程油料作物大规模生产重要工业用脂肪酸的研究进展、存在问题和应用前景等.  相似文献   

6.
The isoprenoid biosynthetic pathway provides intermediates for the synthesis of a multitude of natural products which serve numerous biochemical functions in plants: sterols (isoprenoids with a C30 backbone) are essential components of membranes; carotenoids (C40) and chlorophylls (which contain a C20 isoprenoid side-chain) act as photosynthetic pigments; plastoquinone, phylloquinone and ubiquinone (all of which contain long isoprenoid side-chains) participate in electron transport chains; gibberellins (C20), brassinosteroids (C30) and abscisic acid (C15) are phytohormones derived from isoprenoid intermediates; prenylation of proteins (with C15 or C20 isoprenoid moieties) may mediate subcellular targeting and regulation of activity; and several monoterpenes (C10), sesquiterpenes (C15) and diterpenes (C20) have been demonstrated to be involved in plant defense. Here we present a comprehensive analysis of genes coding for enzymes involved in the metabolism of isoprenoid-derived compounds in Arabidopsis thaliana. By combining homology and sequence motif searches with knowledge regarding the phylogenetic distribution of pathways of isoprenoid metabolism across species, candidate genes for these pathways in A. thaliana were obtained. A detailed analysis of the vicinity of chromosome loci for genes of isoprenoid metabolism in A. thaliana provided evidence for the clustering of genes involved in common pathways. Multiple sequence alignments were used to estimate the number of genes in gene families and sequence relationship trees were utilized to classify their individual members. The integration of all these datasets allows the generation of a knowledge-based metabolic map of isoprenoid metabolic pathways in A. thaliana and provides a substantial improvement of the currently available gene annotation.  相似文献   

7.
Seed germination is a key life history transition for annual plants and partly determines lifetime performance and fitness. Germination speed, the elapsed time for a nondormant seed to germinate, is a poorly understood trait important for plants’ competitiveness and fitness in fluctuating environments. Germination speed varied by 30% among 18 Arabidopsis thaliana populations measured, and exhibited weak negative correlation with flowering time and seed weight, with significant genotype effect (P < 0.005). To dissect the genetic architecture of germination speed, we developed the extreme QTL (X‐QTL) mapping method in A. thaliana. The method has been shown in yeast to increase QTL mapping power by integrating selective screening and bulk‐segregant analysis in a very large mapping population. By pooled genotyping of top 5% of rapid germinants from ~100 000 F3 individuals, three X‐QTL regions were identified on chromosomes 1, 3 and 4. All regions were confirmed as QTL regions by sequencing 192 rapid germinants from an independent F3 selection experiment. Positional overlaps were found between X‐QTLs and previously identified seed, life history and fitness QTLs. Our method provides a rapid mapping platform in A. thaliana with potentially greater power. One can also relate identified X‐QTLs to the A. thaliana physical map, facilitating candidate gene identification.  相似文献   

8.
Two Arabidopsis thaliana cDNAs (IPP1 and IPP2) encoding isopentenyl diphosphate isomerase (IPP isomerase) were isolated by complementation of an IPP isomerase mutant strain of Saccharomyces cerevisiae. Both cDNAs encode enzymes with an amino terminus that may function as a transit peptide for localization in plastids. At least 31 amino acids from the amino terminus of the IPP1 protein and 56 amino acids from the amino terminus of the IPP2 protein are not essential for enzymatic activity. Genomic DNA blot analysis confirmed that IPP1 and IPP2 are derived from a small gene family in A. thaliana. Based on northern analysis expression of both cDNAs occurs predominantly in roots of mature A. thaliana plants grown to the pre-flowering stage.  相似文献   

9.
Weis M  Lim EK  Bruce NC  Bowles DJ 《Biochimie》2008,90(5):830-834
This study describes the characterisation of a chimeric mutant derived from two arabidopsis glucosyltransferases, 71C1 and 71C3. A chimera, N1C3, was constructed to contain the N-terminal domain of 71C1 and the C-terminal domain of 71C3. The chimera and the wild-type GTs displayed a similar Km towards the acceptor scopoletin. However, N1C3 had a Km near identical to 71C3 towards UDP-glucose, but was three-fold lower than that of 71C1. The results suggest that the acceptor and sugar donor are recognised independently by the N- and C-terminal domain of the GTs respectively, and provide a foundation for the future design of glucosyltransferase biocatalysts through assembling domains with different affinity towards the acceptor and donor.  相似文献   

10.
Introns are often added to transgenes to increase expression, although the mechanism through which introns stimulate gene expression in plants and other eukaryotes remains mysterious. While introns vary in their effect on expression, it is unknown whether different genes respond similarly to the same stimulatory intron. Furthermore, the degree to which gene regulation is preserved when expression is increased by an intron has not been thoroughly investigated. To test the effects of the same intron on the expression of a range of genes, GUS translational fusions were constructed using the promoters of eight Arabidopsis genes whose expression was reported to be constitutive (GAE1, CNGC2 and ROP10), tissue specific (ADL1A, YAB3 and AtAMT2) or regulated by light (ULI3 and MSBP1). For each gene, a fusion containing the first intron from the UBQ10 gene was compared to fusions containing the gene's endogenous first intron (if the gene has one) or no intron. In every case, the UBQ10 intron increased expression relative to the intronless control, although the magnitude of the change and the level of expression varied. The UBQ10 intron also changed the expression patterns of the CNGC2 and YAB3 fusions to include strong activity in roots, indicating that tissue specificity was disrupted by this intron. In contrast, the regulation of the ULI3 and MSBP1 genes by light was preserved when their expression was stimulated by the intron. These findings have important implications for biotechnology applications in which a high level of transgene expression in only certain tissues is desired.  相似文献   

11.
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.  相似文献   

12.
Arabidopsis plants were exposed to high light or sulphur depletion alone or in combination for 6 d, and changes of photosynthetic parameters and metabolite abundances were quantified. Photosynthetic electron transport rates (ETRs) of plants exposed to sulphur depletion and high light decreased strongly at day 2 of the acclimation period. After 3 d of treatment, the photosynthetic capacity recovered in plants exposed to the combined stresses, indicating a short recovery time for re‐adjustment of photosynthesis. However, at metabolic level, the stress combination had a profound effect on central metabolic pathways such as the tricarboxylic acid (TCA) cycle, glycolysis, pentose phosphate cycle and large parts of amino acid metabolism. Under these conditions, central metabolites, such as sugars and their phosphates, increased, while sulphur‐containing compounds were decreased. Further differential responses were found for the stress indicator proline accumulating already at day 1 of the high‐light regime, but in combination with sulphur depletion first declined and after a recovery phase reached a delayed elevated level. Other metabolites such as raffinose and putrescine seem to replace proline during the early combinatorial stress response and may act as alternative protectants. Our findings support the notion that plants integrate the selectively sensed stress factors in central metabolism.  相似文献   

13.
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end‐uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild‐type, cgi‐58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High‐leaf‐oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co‐expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant–pest interactions are discussed.  相似文献   

14.
Salicylic acid (SA) plays a central role as a signalling molecule involved in plant defense against microbial attack. Genetic manipulation of SA biosynthesis may therefore help to generate plants that are more disease-resistant. By fusing the two bacterial genes pchA and pchB from Pseudomonas aeruginosa, which encode isochorismate synthase and isochorismate pyruvate-lyase, respectively, we have engineered a novel hybrid enzyme with salicylate synthase (SAS) activity. The pchB-A fusion was expressed in Arabidopsis thaliana under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, with targeting of the gene product either to the cytosol (c-SAS plants) or to the chloroplast (p-SAS plants). In p-SAS plants, the amount of free and conjugated SA was increased more than 20-fold above wild type (WT) level, indicating that SAS is functional in Arabidopsis. P-SAS plants showed a strongly dwarfed phenotype and produced very few seeds. Dwarfism could be caused by the high SA levels per se or, perhaps more likely, by a depletion of the chorismate or isochorismate pools of the chloroplast. Targeting of SAS to the cytosol caused a slight increase in free SA and a significant threefold increase in conjugated SA, probably reflecting limited chorismate availability in this compartment. Although this modest increase in total SA content did not strongly induce the resistance marker PR-1, it resulted nevertheless in enhanced disease resistance towards a virulent isolate of Peronospora parasitica. Increased resistance of c-SAS lines was paralleled with reduced seed production. Taken together, these results illustrate that SAS is a potent tool for the manipulation of SA levels in plants.  相似文献   

15.
Plant genomes are earmarked with defined patterns of chromatin marks. Little is known about the stability of these epigenomes when related, but distinct genomes are brought together by intra‐species hybridization. Arabidopsis thaliana accessions and their reciprocal hybrids were used as a model system to investigate the dynamics of histone modification patterns. The genome‐wide distribution of histone modifications H3K4me2 and H3K27me3 in the inbred parental accessions Col‐0, C24 and Cvi and their hybrid offspring was compared by chromatin immunoprecipitation in combination with genome tiling array hybridization. The analysis revealed that, in addition to DNA sequence polymorphisms, chromatin modification variations exist among accessions of A. thaliana. The range of these variations was higher for H3K27me3 (typically a repressive mark) than for H3K4me2 (typically an active mark). H3K4me2 and H3K27me3 were rather stable in response to intra‐species hybridization, with mainly additive inheritance in hybrid offspring. In conclusion, intra‐species hybridization does not result in gross changes to chromatin modifications.  相似文献   

16.
Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana   总被引:2,自引:0,他引:2  
A cDNA coding for a gene necessary for synthesis of ketocarotenoids was cloned from the alga Haematococcus pluvialis and expressed in the seed of Arabidopsis thaliana. The expression of the algal beta-carotene-oxygenase gene was directed to the seed by use of the 2S, seed storage protein promoter napA. Extracts from seeds of the transgenic plants were clearly red because of accumulation of ketocarotenoids, and free and esterified forms of ketocarotenoids were found in addition to the normal carotenoid composition in the seed. The major ketocarotenoids in the transgenic plants were: 4-keto-lutein (3,3'-dihydroxy-beta-,epsilon-carotene-4-one), adonirubin (3-hydroxy-beta-,beta'-carotene-4,4'-dione) and canthaxanthin (beta-,beta'-carotene-4,4'-dione). 4-Keto-lutein differs from the more common adonixanthin only in the position of one double bond. To increase the substrate availability for the beta-carotene-oxygenase, these transformants were crossed with transgenic plants overexpressing a construct of an endogenous phytoene synthase gene, also under the control of the napA promoter. The resulting crossings gave rise to seeds with a 4.6-fold relative increase of the total pigment, and the three major ketocarotenoids were increased 13-fold compared to seeds of transgenic plants carrying only the beta-carotene-oxygenase construct.  相似文献   

17.
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT–5, a membrane‐bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed‐specific promoter. The FAT‐5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1?9; expression of fat‐5 reduced the 16:0 content of the seed by two‐thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn‐1 position. Seeds from a plant line homozygous for FAT–5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.  相似文献   

18.
Formaldehyde (HCHO) is suggested to be detoxified through one‐carbon (C1) metabolism or assimilated by the Calvin cycle in plants. To further understand the function of the Calvin cycle and C1 metabolism in HCHO metabolism in plants, HCHO elimination and metabolism by Arabidopsis thaliana in HCHO solutions was investigated in this study. Results verified that Arabidopsis could completely eliminate aqueous HCHO from the HCHO solutions. Carbon‐13 nuclear magnetic resonance (13C‐NMR) analysis showed that H13CHO absorbed by Arabidopsis was first oxidized to H13COOH. Subsequently, a clear increase in [U‐13C]Gluc peaks accompanied by a strong enhancement in peaks of [2‐13C]Ser and [3‐13C]Ser appeared in Arabidopsis. Pretreatment with cyclosporin A or L‐carnitine, which might inhibit the transport of 13C‐enriched compounds into chloroplasts and mitochondria, caused a remarkable decline in yields of both [U‐13C]Gluc and [3‐13C]Ser in H13CHO‐treated Arabidopsis. These results suggested that both the Calvin cycle and the C1 metabolism functioned simultaneously during HCHO detoxification. Moreover, both functioned more quickly under high H13CHO stress than low H13CHO stress. When a photorespiration mutant was treated in 6 mm H13CHO solution, formation of [U‐13C]Gluc and [2‐13C]Ser was completely inhibited, but generation of [3‐13C]Ser was not significantly affected. This evidence suggested that the Calvin cycle and C1 metabolism functioned independently in Arabidopsis during HCHO metabolism.  相似文献   

19.
Because seed yield is the major factor determining the commercial success of grain crop cultivars, there is a large interest to obtain more understanding of the genetic factors underlying this trait. Despite many studies, mainly in the model plant Arabidopsis thaliana, have reported transgenes and mutants with effects on seed number and/or seed size, knowledge about seed yield parameters remains fragmented. This study investigated the effect of 46 genes, either in gain- and/or loss-of-function situations, with a total of 64 Arabidopsis lines being examined for seed phenotypes such as seed size, seed number per silique, number of inflorescences, number of branches on the main inflorescence and number of siliques. Sixteen of the 46 genes, examined in 14 Arabidopsis lines, were reported earlier to directly affect in seed size and/or seed number or to indirectly affect seed yield by their involvement in biomass production. Other genes involved in vegetative growth, flower or inflorescence development or cell division were hypothesized to potentially affect the final seed size and seed number. Analysis of this comprehensive data set shows that of the 14 lines previously described to be affected in seed size or seed number, only nine showed a comparable effect. Overall, this study provides the community with a useful resource for identifying genes with effects on seed yield and candidate genes underlying seed QTL. In addition, this study highlights the need for more thorough analysis of genes affecting seed yield.  相似文献   

20.
Serine (Ser) biosynthesis in C(3) plants can occur via several pathways. One major route involves the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC, EC 2.1.1.10) and serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) with glycine (Gly) as one-carbon (1-C) source. An alternative THF-dependent pathway involves the C1-THF synthase/SHMT activities with formate as 1-C source. Here, we have investigated aspects of the regulation of these two folate-mediated pathways in Arabidopsis thaliana (L.) Heynh. Columbia using two approaches. Firstly, transgenic plants overexpressing formate dehydrogenase (FDH, EC 1.2.1.2) were used to continue our previous studies on the function of FDH in formate metabolism. The formate pool size was approximately 73 nmol (g FW)(-1) in wild type (WT) Arabidopsis plants; three independent transgenic lines had similar-sized pools of formate. Transgenic plants produced more (13)CO(2) from supplied [(13)C]formate than did WT plants but were not significantly different from WT plants in their synthesis of Ser. We concluded that FDH has no direct role in the regulation of the above two pathways of Ser synthesis; the breakdown of formate to CO(2) by the FDH reaction is the primary and preferred fate of the organic acid in Arabidopsis. The ratio between the GDC/SHMT and C1-THF synthase/SHMT pathways of Ser synthesis from [alpha-(13)C]Gly and [(13)C]formate, respectively, in Arabidopsis shoots was 21 : 1; in roots, 9 : 1. In shoots, therefore, the pathway from formate plays only a small role in Ser synthesis; in the case of roots, results indicated that the 9 : 1 ratio was as a result of greater fluxes of (13)C through both pathways together with a relatively higher contribution from the C1-THF synthase/SHMT route than in shoots. We also examined the synthesis of Ser in a GDC-deficient mutant of Arabidopsis (glyD) where the GDC/SHMT pathway was impaired. Compared with WT, glyD plants accumulated 5-fold more Gly than WT after supplying [alpha-(13)C]Gly for 24 h; the accumulation of Ser from [alpha-(13)C]Gly was reduced by 25% in the same time period. On the other hand, the accumulation of Ser through the C1-THF synthase/SHMT pathway in glyD plants was 2.5-fold greater than that in WT plants. Our experiments confirmed that the GDC/SHMT and C1-THF synthase/SHMT pathways normally operate independently in Arabidopsis plants but that when the primary GDC/SHMT pathway is impaired the alternative C1-THF synthase/SHMT pathway can partially compensate for deficiencies in the synthesis of Ser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号