共查询到20条相似文献,搜索用时 0 毫秒
1.
David Petrak Ehsan Atefi Liya Yin William Chilian Hossein Tavana 《Biotechnology and bioengineering》2014,111(2):404-412
2.
Carlos F. C. Marques Teresa Mourão Catarina M. S. S. Neves Álvaro S. Lima Isabel Boal‐Palheiros João A. P. Coutinho Mara G. Freire 《Biotechnology progress》2013,29(3):645-654
Aqueous biphasic systems (ABS) using ionic liquids (ILs) offer an alternative approach for the extraction, recovery, and purification of biomolecules through their partitioning between two aqueous liquid phases. In this work, the ability of a wide range of ILs to form ABS with aqueous solutions of Na2CO3 was evaluated. The ABS formed by IL + water + Na2CO3 were determined at 25°C, and the respective solubility curves, tie‐lines, and tie‐line lengths are reported. The studied ILs share the common chloride anion, allowing the IL cation core, the cation isomerism, the presence of functionalized groups, and alkyl side chain length effects to be evaluated. An increase in the cation side alkyl chain length leads to a higher ability for liquid–liquid demixing whereas different positional isomers and the presence of an allyl group have no major influence in the phase diagrams behavior. Quaternary phosphonium‐ and ammonium‐based fluids are more able to form an ABS when compared with imidazolium‐, pyridinium‐, pyrrolidinium‐, and piperidium‐based ILs. Moreover, the presence of an aromatic cation core has no major contribution to the formation of ABS when compared to the respective nonaromatic counterparts. Finally, to appraise on the systems applicability in downstream processing, selected systems were used for the partitioning of tetracyclines (neutral and salt forms) — a class of antibiotics produced by bacteria fermentation. Single‐step extraction efficiencies for the IL‐rich phase were always higher than 99% and confirm the great potential of ILs to be applied in the biotechnological field. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:645–654, 2013 相似文献
3.
Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system 总被引:1,自引:0,他引:1
Phase diagrams of alcohol (ethanol or 2-propanol)/salt (phosphate or sulfate) aqueous two-phase systems were made. The system consisting of 60% (v/v) ethanol and 15% (w/v) phosphate was then used to separate glycyrrhizin from an extract of Glycyrrhiza uralensis Fisch and gave a 92% recovery of glycyrrhizin with 2.6-fold purification. 相似文献
4.
Lisong Nathan Mao Jameson K. Rogers Matthew Westoby Lynn Conley John Pieracci 《Biotechnology progress》2010,26(6):1662-1670
The extraction of antibodies using a polyethylene glycol (PEG)‐citrate aqueous two‐phase system (ATPS) was investigated. Studies using purified monoclonal antibody (mAb) identified operating ranges for successful phase formation and factors that significantly affected antibody partitioning. The separation of antibody and host cell protein (HCP) from clarified cell culture media was examined using statistical design of experiments (DOE). The partitioning of antibody was nearly complete over the entire range of the operating space examined. A model of the HCP partitioning was generated in which both NaCl and citrate concentrations were identified as significant factors. To achieve the highest purity, the partitioning of HCP from cell culture fluid into the product containing phase was minimized using a Steepest Descent algorithm. An optimal ATPS consisting of 14.0% (w/w) PEG, 8.4% (w/w) citrate, and 7.2% (w/w) NaCl at pH 7.2 resulted in a product yield of 89%, an approximate 7.6‐fold reduction in HCP levels relative to the clarified cell culture fluid before extraction and an overall purity of 70%. A system consisting of 15% (w/w) PEG, 8% (w/w) citrate, and 15% (w/w) NaCl at pH 5.5 reduced product‐related impurities (aggregates and low molecular product fragments) from ~40% to less than 0.5% while achieving 95% product recovery. At the experimental conditions that were optimized in the batch mode, a scale‐up model for the use of counter‐current extraction technology was developed to identify potential improvements in purity and recovery that could be realized in the continuous operational mode. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
5.
João Vitor Dutra Molino Daniela de Araújo Viana Marques Adalberto Pessoa Júnior Priscila Gava Mazzola Maria Silvia Viccari Gatti 《Biotechnology progress》2013,29(6):1343-1353
Upstream improvements have led to significant advances in the productivity of biomolecules and bioparticles. Today, downstream processes are the bottleneck in the production of some biopharmaceuticals, a change from previous years. Current purification platforms will reach their physical limits at some point, indicating the need for new approaches. This article reviews an alternative method to extract and purify biomolecules/bioparticles named aqueous two‐phase system (ATPS). Biocompatibility and readiness to scale up are some of the ATPS characteristics. We also discuss some of ATPS applications in the biotechnology field. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1343–1353, 2013 相似文献
6.
Rangel-Yagui CO Lam H Kamei DT Wang DI Pessoa A Blankschtein D 《Biotechnology and bioengineering》2003,82(4):445-456
The enzyme glucose-6-phosphate dehydrogenase (G6PD) plays an important role in maintaining the level of NADPH and in producing pentose phosphates for nucleotide biosynthesis. It is also of great value as an analytical reagent, being used in various quantitative assays. In searching for new strategies to purify this enzyme, the partitioning of G6PD in two-phase aqueous mixed (nonionic/cationic) micellar systems was investigated both experimentally and theoretically. Our results indicate that the use of a two-phase aqueous mixed micellar system composed of the nonionic surfactant C(10)E(4) (n-decyl tetra(ethylene oxide)) and the cationic surfactant C(n)TAB (alkyltrimethylammonium bromide, n = 8, 10, or 12) can improve significantly the partitioning behavior of G6PD relative to that obtained in the two-phase aqueous C(10)E(4) micellar system. This improvement can be attributed to electrostatic attractions between the positively charged mixed (nonionic/cationic) micelles and the net negatively charged enzyme G6PD, resulting in the preferential partitioning of G6PD to the top, mixed micelle-rich phase of the two-phase aqueous mixed micellar systems. The effect of varying the cationic surfactant tail length (n = 8, 10, and 12) on the denaturation and partitioning behavior of G6PD in the C(10)E(4) /C(n)TAB/buffer system was investigated. It was found that C(8)TAB is the least denaturing to G6PD, followed by C(10)TAB and C(12)TAB. However, the C(10)E(4)/C(12)TAB/buffer system generated stronger electrostatic attractions with the net negatively charged enzyme G6PD than the C(10)E(4)/C(10)TAB/buffer and the C(10)E(4)/C(8)TAB/buffer systems, when using the same amount of cationic surfactant. Overall, the two-phase aqueous mixed (C(10)E(4)/C(10)TAB) micellar system yielded the highest G6PD partition coefficient of 7.7, with a G6PD yield in the top phase of 71%, providing the optimal balance between the denaturing effect and the electrostatic attractions for the three cationic surfactants examined. A recently developed theoretical framework to predict protein partition coefficients in two-phase aqueous mixed (nonionic/ionic) micellar systems was implemented, and the theoretically predicted G6PD partition coefficients were found to be in reasonable quantitative agreement with the experimentally measured ones. 相似文献
7.
Human proteins are expressed in some hosts wrongly glycosylated or nonglycosylated. Although it is accepted that glycosylation contributes to the stability of the protein in solution, the effect of glycosylation on the stability of human antibodies is not fully understood. In this work, we present solubility studies of two human antibodies that have the same primary structure but different glycosylation pattern. The studies were done by monitoring the partitioning behavior of both proteins in a series of aqueous two‐phase systems at and away the isoelectric point of the proteins and at different temperatures. Our studies show that in the absence of direct electrostatic forces, the partitioning behavior of the antibodies depends on the presence or absence of the polysaccharide chains. Overall, the nonglycosylated protein is less soluble than the glycosylated one. The potential of aqueous two‐phase systems for the separation of the glycosylated and nonglycosylated proteins was also explored. A simple series of extractions seems to be enough to separate the glycosylated variety from the nonglycosylated one at high purity but low yields. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:943–950, 2013 相似文献
8.
The kinetics of phase separation in aqueous two-phase systems have been investigated as a function of the physical properties of the system. Two distinct situations for the settling velocities were found, one in which the light, organic-rich (PEG) phase is continuous and the other in which the heavier, salt-rich (phosphate) phase is continuous. The settling rate of a particular system is a crucial parameter for equipment design, and it was studied as a function of measured viscosity and density of each of the phases as well as the interfacial tension between the phases. Interfacial tension increases with increasing tie line length. A correlation that describes the rate of phase separation was investigated. This correlation, which is a function of the system parameters mentioned above, described the behavior of the system successfully. Different values of the parameters in the correlation were fitted for bottom-phase-continuous and top-phase-continuous systems. These parameters showed that density and viscosity play a role in the rate of separation in both top continuous- and bottom continuous-phase regions but are more dominant in the continuous top-phase region. The composition of the two-phase system was characterized by the tie line length. The rate of separation increased with increasing tie line length in both cases but at a faster rate when the bottom (less viscous) phase was the continuous phase. These results show that working in a continuous bottom-phase region is advantageous to ensure fast separation. 相似文献
9.
We present a novel microfluidic system in which an aqueous two-phase laminar flow is stably formed, and the continuous partitioning of relatively large cells can be performed, eliminating the influence of gravity. In this study, plant cell aggregates whose diameters were 37-96 microm were used as model particles. We first performed cell partitioning using a simple straight microchannel having two inlets and two outlets and examined the effects of the flow rate and the phase width on partitioning efficiency. Second, by using a microchannel with a pinched segment, the partitioning efficiency was successfully improved. This microscale aqueous two-phase flow system can further be incorporated into micro total analysis systems (microTAS) or lab-on-a-chip technology, owing to its simplicity, applicability, and biocompatibility. 相似文献
10.
11.
This article presents results of continuous multistage aqueous two‐phase extraction of an immunoglobulin G1 from cell supernatant in a mixer‐settler unit. An aqueous two‐phase system consisting of polyethylene glycol 2000, phosphate salt, and water was applied without and with sodium chloride (NaCl). Influences of different parameters such as throughput, phase ratio, and stage number on the extraction performance were analyzed. For systems without NaCl, the extraction was carried out as a washing step. An increase of stage number from one to five stages enabled to increase the immunoglobulin G1 purity from 11.8 to 32.6% at a yield of nearly 90%. Furthermore, a reduction of product phase volume due to a higher phase ratio led to an increase of purity from 20.8 to 29.6% in a three‐stage countercurrent extraction. For experiments with NaCl moderate partitioning conditions were adjusted by adding 8 wt% NaCl. In that case, the extraction was carried out as a stripping step. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:925–936, 2015 相似文献
12.
Effect of aeration and agitation on extractive fermentation of clavulanic acid by using aqueous two‐phase system
下载免费PDF全文

Daniela A. Viana Marques Valéria C. Santos‐Ebinuma Adalberto Pessoa‐Júnior Ana L. F. Porto Beatriz Rivas Torres Attilio Converti 《Biotechnology progress》2016,32(6):1444-1452
In this work, the effects of agitation and aeration rates on aqueous two‐phase system (ATPS)‐based extractive fermentation of clavulanic acid (CA) by Streptomyces variabilis DAUFPE 3060 were investigated through a 22 full factorial design, where oxygen transfer rate (OTR) and oxygen uptake rate (OUR) were selected as the responses. Aeration rates significantly influenced cell growth, OUR, and CA yield, while OTR was practically the same in all the runs. Under the intermediate agitation (950 rpm) and aeration conditions (3.5 vvm) of the central point runs, it was achieved OTR of 1.617 ± 0.049 mmol L?1 h?1, OUR of 0.132 ± 0.030 mmol L?1 h?1, maximum CA production of 434 ± 4 mg L?1, oxygen mass transfer coefficient of 33.40 ± 2.01 s?1, partition coefficient of 66.5 ± 1.5, CA yield in the top and bottom phases of 75% ± 2% and 19% ± 1%, respectively, mass balance of 95% ± 4% and purification factor of 3.8 ± 0.1. These results not only confirmed the paramount role of O2 supply, broth composition and operational conditions in CA ATPS‐extractive fermentation, but also demonstrated the possibility of effectively using this technology as a cheap tool to simultaneously produce and recover CA. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1444–1452, 2016 相似文献
13.
Preparation and recycling of aqueous two‐phase systems with pH‐sensitive amphiphilic terpolymer PADB
In this study, a novel pH‐sensitive terpolymer PADB was synthesized by random terpolymerization of 2‐(dimethylamino) ethyl methacrylate, acrylic acid, and butyl methacrylate. The terpolymer PADB could form aqueous two‐phase systems (ATPS) with a light‐sensitive terpolymer PNBC, which was synthesized in our laboratory, using n‐isopropylacrylamide, n‐butyl acrylate, chlorophyllin sodium copper salt as monomers. More than 97% of the PADB terpolymer could be recovered by adjusting the pH to isoelectric point (PI) 4.1. The terpolymer PNBC could be recovered by using light radiation at 488 nm, with recovery ratio of 98%. BSA and lysozyme were partitioned in the PNBC–PADB ATPS to examine this new system. It was found that the partition coefficient of BSA and lysozyme could reach 4.46 and 0.49 in the systems, respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
14.
通过研究丙醇-水-硫酸铵双水相分相情况,确定了刚好分相时丙醇和硫酸铵含量.测定了上、下相电导率和折光率,得出一定丙醇和硫酸铵含量分相后上、下相组成,上相主要富含丙醇,下相主要富含硫酸铵.将该双水相体系应用于西红柿和柠檬皮中色素分离,得到较好分离效果. 相似文献
15.
Vargas M Segura A Herrera M Villalta M Angulo Y Gutiérrez JM León G Burnouf T 《Biotechnology progress》2012,28(4):1005-1011
The current shortages in human plasma products at global levels justify the development of new, cost effective plasma fractionation methods. We have developed a fractionation process to obtain immunoglobulin G (IgG) and albumin‐enriched fractions based on polymer‐salt aqueous two phase system (ATPS). A small‐scale (0.02 L) ATPS composed of polyethyleneglycol 3350 (PEG), potassium phosphate and sodium chloride, at pH 6.1, was evaluated and subjected to 50‐fold scale‐up (1 L). Further purification of the fractions was performed using caprylic acid precipitation and ion exchange chromatography. Similar yield and purity were obtained at both small and large scales. IgG precipitated in the PEG rich upper phase at 83% recovery and 2.75‐fold purification factor. An 81% pure albumin fraction was obtained in the salt rich bottom phase with a 91% yield. After polishing, IgG was obtained at a recovery of 70% and a purity of 92%. Corresponding values for albumin were 91% and 90%. This IgG and albumin fractionation technology deserves further evaluation as it may represent a potential alternative to conventional plasma fractionation methods. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1005–1011, 2012 相似文献
16.
A new aqueous two phase system comprising polyethylene glycol and xanthan is reported together with its phase diagram. The
phase composition of the bottom phase did not vary (PEG 1.6–1.8% w/w; xanthan 0.24–0.28% w/w) while that of the top phase
varied significantly (PEG 4–5% w/w, xanthan 0.05–1.37% w/w). Unlike conventional aqueous two phase systems, the viscosity
of the top phase is also high and values are comparable to that of the bottom phase. When BSA was used as a model protein,
it partitioned entirely into the bottom phase. 相似文献
17.
Stefan A. Oelmeier Florian Dismer Jürgen Hubbuch 《Biotechnology and bioengineering》2011,108(1):69-81
Aqueous two‐phase systems (ATPSs) as separation technique have regained substantial interest from the biotech industry. Biopharmaceutical companies faced with increasing product titers and stiffening economic competition reconsider ATPS as an alternative to chromatography. As the implementation of an ATPS is material, time, and labor intensive, a miniaturized and automated screening process would be beneficial. In this article such a method, its statistical evaluation, and its application to a biopharmaceutical separation task are shown. To speed up early stage ATPS profiling an automated application of the cloud‐point method for binodal determination was developed. PEG4000–PO4 binodals were measured automatically and manually and were found to be identical within the experimental error. The ATPS screening procedure was applied to a model system and an industrial separation task. PEG4000–PO4 systems at a protein concentration of 0.75 mg/mL were used. The influence of pH, NaCl addition, and tie line length was investigated. Lysozyme as model protein, two monoclonal antibodies, and a host cell protein pool were used. The method was found to yield partition coefficients identical to manually determined values for lysozyme. The monoclonal antibodies were shifted from the bottom into the upper phase by addition of NaCl. This shift occurred at lower NaCl concentration when the pH of the system was closer to the pI of the distributed protein. Addition of NaCl, increase in PEG4000 concentration and pH led to significant loss of the mAb due to precipitation. Capacity limitations of these systems were thus demonstrated. The chosen model systems allowed a reduction of up to 50% HCP with a recovery of greater than 95% of the target proteins. As these values might not be industrially relevant when compared to current chromatographic procedures, the developed screening procedure allows a fast evaluation of more suitable and optimized ATPS system for a given task. Biotechnol. Bioeng. 2011; 108:69–81. © 2010 Wiley Periodicals, Inc. 相似文献
18.
José González‐Valdez Marco Rito‐Palomares Jorge Benavides 《Biotechnology progress》2013,29(2):378-385
Chemical modification of proteins is gaining importance due to the improvement in properties and the broader range of applications that these protein conjugates have. Once modified, several purification strategies need to be applied to isolate the conjugates of interest. Aqueous two‐phase systems (ATPS) are an attractive alternative for the primary recovery of proteins and their conjugates. However, to better understand which biochemical parameters affect in greater degree the partition behavior of these modified proteins in ATPS, it becomes necessary to characterize the partition behavior of different species. In this work, ribonuclease A (RNase A) was selected as a model protein to address the partition behavior of chemically modified proteins in ATPS. Native, mono‐PEGylated, Uniblue A, Dabsyl Chloride, and Direct Red 83 chemically modified RNase A's were partitioned in 16 different polyethylene glycol (PEG)–potassium phosphate ATPS. Results suggest that while the effects of system design parameters govern the partition of native RNase A, the behavior of the chemically modified species is more influenced by the physicochemical characteristics of the modifying molecules, that in most cases promote partition toward the top polymer‐rich phase with recovery percentages as high as 86%. It has been found that both, the hydrophobicity and molecular weight of the modifying species play a preponderant role in conjugate partition behavior since as hydrophobicity increases partition is promoted towards the PEG‐rich phase balancing the effect of the molecular weight of the modifying molecules that tends to shift partition towards the salt rich phase. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 378–385, 2013 相似文献
19.
Mazzola PG Lam H Kavoosi M Haynes CA Pessoa A Penna TC Wang DI Blankschtein D 《Biotechnology and bioengineering》2006,93(5):998-1004
Green fluorescent protein (GFP) has been proposed as an ideal choice for a protein-based biological indicator for use in the validation of decontamination or disinfection treatments. In this article, we present a potentially scalable and cost-effective way to purify recombinant GFP, produced by fermentation in Escherichia coli, by affinity-enhanced extraction in a two-phase aqueous micellar system. Affinity-enhanced partitioning, which improves the specificity and yield of the target protein by specific bioaffinity interactions, has been demonstrated. A novel affinity tag, family 9 carbohydrate-binding module (CBM9) is fused to GFP, and the resulting fusion protein is affinity-extracted in a decyl beta-D-glucopyranoside (C10G1) two-phase aqueous micellar system. In this system, C10G1 acts as phase forming and as affinity surfactant. We will further demonstrate the implementation of this concept to attain partial recovery of affinity-tagged GFP from a clarified E. coli cell lysate, including the simultaneous removal of other contaminating proteins. The cell lysate was partitioned at three levels of dilution (5x, 10x, and 40x). Irrespective of the dilution level, CBM9-GFP was found to partition preferentially to the micelle-rich phase, with the same partition coefficient value as that found in the absence of the cell lysate. The host cell proteins from the cell lysate were found to partition preferentially to the micelle-poor phase, where they experience less excluded-volume interactions. The demonstration of proof-of-principle of the direct affinity-enhanced extraction of CBM9-GFP from the cell lysate represents an important first step towards developing a cost-effective separation method for GFP, and more generally, for other proteins of interest. 相似文献
20.
Edith Espitia‐Saloma Patricia Vâzquez‐Villegas Marco Rito‐Palomares Oscar Aguilar 《Biotechnology journal》2016,11(5):708-716
Aqueous two‐phase systems (ATPS) are a liquid‐liquid extraction technology with clear process benefits; however, its lack of industrial embracement is still a challenge to overcome. Antibodies are a potential product to be recovered by ATPS in a commercial context. The objective of this work is to present a more integral approach of the different isolated strategies that have arisen in order to enable a practical, generic implementation of ATPS, using human immunoglobulin G (IgG) as experimental model. A microfluidic device is used for ATPS parameters preselection for product recovery. ATPS were continuously operated in a mixer‐settler device in one stage, multistage and multistage with recirculation configuration. Single‐stage pure IgG extraction with a polyethylene glycol (PEG) 3350‐phophates ATPS within continuous operation allowed a 65% recovery. Further implementation of a multistage platform promoted a higher particle partitioning reaching a 90% recovery. The processing of IgG from a cell supernatant culture harvest in a multistage system with top phase recirculation resulted in 78% IgG recovery in bottom phase. This work conjugates three not widely spread methodologies for ATPS: microfluidics, continuous and multistage operation. 相似文献