首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kumar H  Kaul K  Bajpai-Gupta S  Kaul VK  Kumar S 《Gene》2012,492(1):276-284
Stevia [Stevia rebuaidana (Bertoni); family: Asteraceae] is known to yield diterpenoid steviol glycosides (SGs), which are about 300 times sweeter than sugar. The present work analyzed the expression of various genes of the SGs biosynthesis pathway in different organs of the plant in relation to the SGs content. Of the various genes of the pathway, SrDXS, SrDXR, SrCPPS, SrKS, SrKO and three glucosyltransferases namely SrUGT85C2, SrUGT74G1 and SrUGT76G1 were reported from stevia. Here, we report cloning of seven additional full-length cDNA sequences namely, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI and SrGGDPS followed by expression analysis of all the fifteen genes vis-à-vis SGs content analysis. SGs content was highest in the leaf at 3rd node position (node position with reference to the apical leaf as the first leaf) as compared to the leaves at other node positions. Except for SrDXR and SrKO, gene expression was maximum in leaf at 1st node and minimum in leaf at 5th node. The expression of SrKO was highest in leaf at 3rd node while in case of SrDXR expression showed an increase up to 3rd leaf and decrease thereafter. SGs accumulated maximum in leaf tissue followed by stem and root, and similar was the pattern of expression of all the fifteen genes. The genes responded to the modulators of the terpenopids biosynthesis. Gibberellin (GA3) treatment up-regulated the expression of SrMCT, SrCMK, SrMDS and SrUGT74G1, whereas methyl jasmonate and kinetin treatment down-regulated the expression of all the fifteen genes of the pathway.  相似文献   

2.
Steviol glycoside and gibberellin biosynthetic routes are known as divergent branches of a common origin in Stevia. A UDP-glycosyltransferase encoded by SrUGT74G1 catalyses the conversion of steviolbioside into stevioside in Stevia rebaudiana leaves. In the present study, transgenic Arabidopsis thaliana overexpressing SrUGT74G1 cDNA from Stevia were developed to check the probability of stevioside biosynthesis in them. However, stevioside accumulation was not evident in transgenics. Also, the transgenic Arabidopsis showed no change in GA3 content on SrUGT74G1 overexpression. Surprisingly, significant accumulation of catechin was noticed in transgenics. The transgenics showed a considerable increase in shoot length, root length and rosette area. An increase in free radical scavenging activity of transgenics was noticed. Moreover, the seed yield of transgenics was also increased by 6–15 % than control. Additionally, variation in trichome branching pattern on leaf surface of transgenics was observed. The trichome branching pattern was also validated by exogenous catechin exposure (10, 50, 100 ng ml?1) to control plants. Hence, present study reports the probable role of SrUGT74G1 from Stevia in catechin accumulation of transgenic Arabidopsis thaliana. Thus, detailed study in present perspective has revealed the role of Stevia SrUGT74G1 gene in trichome branching pattern, improved vegetative growth, scavenging potential and seed yield by catechin accumulation in transgenic Arabidopsis.  相似文献   

3.
Stevioside and rebaudioside A are the chief diterpene glycosides present in the leaves of Stevia rebaudiana. Rebaudioside A imparts a desirable sweet taste, while stevioside produces a residual bitter aftertaste. Enzymatic synthesis of rebaudioside A from stevioside can increase the ratio of rebaudioside A to stevioside in steviol glycoside products, providing a conceivable strategy to improve the organoleptic properties of steviol glycoside products. Here, we demonstrate the efficient conversion of stevioside to rebaudioside A by coupling the activities of recombinant UDP-glucosyltransferase UGT76G1 from S. rebaudiana and sucrose synthase AtSUS1 from Arabidopsis thaliana. The conversion occurred via regeneration of UDP-glucose by AtSUS1. UDP was applicable as the initial material instead of UDP-glucose for UDP-glucose recycling. The amount of UDP could be greatly reduced in the reaction mixture. Rebaudioside A yield in 30?h with 2.4?mM stevioside, 7.2?mM sucrose, and 0.006?mM UDP was 78%.  相似文献   

4.
甜菊糖苷积累与其生物合成基因表达的关系   总被引:1,自引:0,他引:1  
为探究甜叶菊叶片中甜菊糖苷积累与其合成途径上关键基因表达的关系,本研究分别检测了鑫丰3号苗期不同冠层和3个不同品种甜叶菊(守田3号、江甜3号、谱星1号)收获期混合叶片样品中多种糖苷的含量,同时定量检测对应样品中甜菊糖苷合成关键基因的表达水平。结果显示,总糖苷在鑫丰3号顶叶中最高,底叶中最低,而多数检测基因(6/8)表达水平也在顶叶最高底叶中最低;单一糖苷甜菊苷在顶叶中积累最高,而其催化酶编码基因Sr UGT74G1表达也在顶叶中最高;莱鲍迪苷A则在底叶中积累最多,其催化酶编码基因Sr UGT76G1表达水平也在底叶中表达最高。3个品种相比,总糖苷和莱鲍迪苷A的积累在江甜3号中最高,谱星1号中最低;甜菊苷的积累在守田3号中最高,江甜3号中最低,但基因表达水平与糖苷积累趋势一致的类似结果并未在不同品种间出现。由此可知,甜菊糖苷合成基因的表达水平可以影响总糖苷的积累,且在同一甜叶菊品种中单一糖苷合成调控基因的表达水平可以反映其调控的单糖苷的积累量。  相似文献   

5.
This work investigated the agronomic, physiological and biochemical response of Stevia rebaudiana Bertoni grown under different nitrogen (N) rates. A pot trial in open air conditions was set up in 2012 with the aim to evaluate the effect of four N rates on the biometric and productive characteristics, steviol glycoside (SG) content as well as on leaf gas exchanges, chlorophyll fluorescence, photosynthetic pigments, Rubisco activity and N use efficiency. N deficiency caused a decrease in leaf N content, chlorophylls and photosynthetic CO2 assimilation, resulting in a lower dry matter accumulation as well as in reduced SG production. The application of 150 kg N ha? 1 seems to be the most effective treatment to improve rebaudioside A (Reb A) content, Reb A/stevioside ratio, photosynthetic CO2 assimilation, stomatal conductance, N use efficiency, ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) and PSII efficiency. The results demonstrate that by using an appropriate N rate it is possible to modulate the SG biosynthesis, with a significant increase in the Reb A content and in the ratio between Reb A and stevioside. This finding is of great relevance in order to obtain a raw material designed to meet consumer needs and bio-industry requirements for high-quality, Reb A content, and safe and environmentally friendly products.  相似文献   

6.
Stevia rebaudiana is a sweet herbaceous perennial plant, which is frequently used in the preparation of plant-based sweeteners. The demand for such sweeteners continues to increase due to purposeful nutrition and modern-day metabolic syndromes. More than 20 types of steviol glycosides provide a sweet taste, which are more than 300 times sweeter than sucrose. They are formed of two main components, namely stevioside and rebaudioside A. Only a handful of studies have dealt with Stevia rebaudiana leaf extracts, the conversion of pure stevioside into the preferred rebaudioside A is more common. The aim of this study was to enrich the rebaudioside A content of Stevia rebaudiana leaf extract using enzymatic bioconversion by applying fermented cyclodextrin glycosyltransferase from Bacillus licheniformis DSM13. Two differently processed plant materials, namely dried and lyophilized Stevia rebaudiana plants, were extracted and compared. Following the bioconversion, the rebaudioside A content was on average doubled. The maximum increase was fivefold with a 70–80% conversion of the stevioside.  相似文献   

7.
The contents of three major steviol glycosides (SGs) (stevioside and rebaudiosides A and C) in vegetative and generative organs during ontogeny of Stevia rebaudiana Bertoni were analysed with HPLC. Plant organs contained different amounts of the SGs, which declined in the following order: leaves, flowers, stems, seeds, roots. The highest content of the SGs was found in upper young actively growing shoot sections, whereas lower senescent shoot sections exhibited the lowest amount of such compounds. During ontogeny a gradual increase in the SG content was observed in both mature stevia leaves and stems, and this process lasted up to the budding phase and the onset of flowering. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
9.
Rebaudioside D is a sweetener from Stevia rebaudiana with superior sweetness and organoleptic properties, but its production is limited by its minute abundance in S. rebaudiana leaves. In this study, we established a multi-enzyme reaction system with S. rebaudiana UDP-glycosyltransferases UGT76G1, Solanum lycopersicum UGTSL2 and Solanum tuberosum sucrose synthase StSUS1, achieving a two-step glycosylation of stevioside to produce rebaudioside D. However, an increase in the accumulation of rebaudioside D required the optimization of UGTSL2 catalytic activity towards glucosylation of rebaudioside A and reducing the formation of the side-product rebaudioside M2. On the basis of homology modelling and structural analysis, Asn358 in UGTSL2 was subjected to saturating mutagenesis, and the Asn358Phe mutant was used instead of wild-type UGTSL2 for bioconversion. The established multi-enzyme reaction system employing the Asn358Phe mutant produced 14.4 g l−1 (1.6 times of wild-type UGTSL2) rebaudioside D from 20 g l−1 stevioside after reaction for 24 h. This system is useful for large-scale rebaudioside D production and expands our understanding of the pathways involved in its synthesis.  相似文献   

10.
11.
From the commercial extract of the leaves of Stevia rebaudiana, two new diterpenoid glycosides were isolated besides the known steviol glycosides including stevioside, rebaudiosides A–F, rubusoside, and dulcoside A. The structures of the two new compounds were identified as 13-[(2-O-6-deoxy-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-6-deoxy-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

12.
To evaluate and characterize stevioside biosynthetic pathway in Stevia rebaudiana Bertoni cv Houten, two enzyme fractions that catalyze glucosylation of steviol (ent-13-hydroxy kaur-16-en-19-oic acid) and steviol-glucosides (steviol-13-O-glucopyranoside, steviolbioside and stevioside), utilizing UDP-glucose as the glucose donor, were prepared from the soluble extracts of S. rebaudiana leaves. Enzyme fraction I, passed through DEAE-Toyopearl equilibrated with 50 millimolar K-phosphate pH 7.5, catalyzed the glucosylation to steviol and 19-O-methylsteviol, but not to iso-steviol and 13-O-methylsteviol, indicating that 13-hydroxyl group of the steviol skeleton is glucosylated first from UDP-glucose to produce steviol-13-O-glucopyranoside. Enzyme fraction II, eluted from the DEAE-Toyopearl column with 0.15 molar KCI, catalyzed the glucose transfer from UDP-glucose to steviol-13-O-glucopyranoside, steviolbioside and stevioside, but not to rubusoside (13, 19-di-O-glucopyranoside) and rebaudioside A. The reaction products glucosylated from steviol-13-O-glucopyranoside, steviolbioside and stevioside were identified to be steviolbioside, stevioside and rebaudioside A, respectively. These results indicate that in the steviol-glucoside biosynthetic pathway, steviol-13-O-glucopyranoside produced from the steviol glucosylation is successively glucosylated to steviolbioside, then to stevioside producing rebaudioside A.  相似文献   

13.
From the commercial extract of the leaves of Stevia rebaudiana, two new minor diterpene glycosides having α-glucosyl linkage were isolated besides the known steviol glycosides including stevioside, steviolbioside, rebaudiosides A–F, rubusoside and dulcoside A. The structures of the two compounds were identified as 13-[(2-O-(3-α-O-d-glucopyranosyl)-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-β-d-glucopyranosyl-3-O-(4-O-α-d-glucopyranosyl)-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

14.
15.
Gibberellin A3 fed to cell suspension cultures of Stevia rebaudiana showed a fast conversion to stevioside. The product was detected within one day after gibberellin addition and achieved its maximum concentration after one week. However, using special production media (without precursor or elicitor), stevioside was produced only two to seven weeks after inoculation [1]. Elicitation of suspension cultures was performed with Stevia specific and non-specific fungi and with yeast extract. Although production of some secondary metabolites was induced, stevioside was not synthesized.  相似文献   

16.
17.
The physiological responses of transgenic tobacco (Nicotiana tabacum L.) plants that express high levels of an introduced oat (Avena sativa L.) phytochrome (phyA) gene to various light treatments are compared with those of wild-type (WT) plants. Seeds, etiolated seedlings, and light-grown plants from a homozygous transgenic tobacco line (9A4) constructed by Keller et al. (EMBO J, 8, 1005–1012, 1989) were treated with red (R), far-red (FR), or white light (WL) with or without supplemental FR light, revealing major perturbations of the normal photobiological responses. White light stimulated germination of both WT and transgenic seed, but addition of FR to the WL treatment suppressed germination. In the WT, all fluence rates tested inhibited germination, but in the transgenics, reduction effluence rate partially relieved germination from the FR-mediated inhibition. It is suggested that the higher absolute levels of the FR-absorbing form of phytochrome (Pfr) in the irradiated transgenics, compared to the WT, may be responsible for the reduced FR-mediated inhibition of germination in the former. Hypocotyl extension of dark-grown seedlings of both WT and transgenic lines was inhibited by continuous R or FR irradiation, typical of the high-irradiance response (HIR). After 2 d of de-etiolation in WL, the WT seedlings had lost the FR-mediated inhibition of hypocotyl extension, whereas it was retained in the transgenics. The FR-mediated inhibition of hypocotyl extension in the transgenic seedlings after de-etiolation may reflect the persistence of an, FR-HIR response mediated by the overexpressed oat PhyA phytochrome. Light-grown WT seedlings exhibited typical shade-avoidance responses when treated with WL supplemented with high levels of FR radiation. Internode and petiole extension rates were markedly increased, and the chlorophyll ab ratio decreased, in the low-R: FR treatment. The transgenics, however, showed no increases in extension growth under low-R: FR treatments, and at low fluence rates both internode and petiole extension rates were significantly decreased by low R FR. Interpretation of these data is difficult. The depression of the chlorophyll ab ratio by low R FR was identical in WT and transgenic plants, indicating that not all shade-avoidance responses of light-grown plants were disrupted by the over-expression of the introduced oat phyA gene. The results are discussed in relation to the proposal that different members of the phytochrome family may have different physiological roles.Abbreviations FR far-red light - PAR photosynthetically active radiation - Pr, Pfr red- and FR-absorbing forms of phytochrome - Ptot total phytochrome - PhyA (PhyA) gene (encoded protein) for phytochrome - R red light - WL white light - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.C.M.; the production of the transgenic seed was funded by the U.S. Department of Energy (DE-F602-88ER13968) to R.D.V., and by E.I. du Pont de Nemours; Dr. G.C. Whitelam is thanked for the provision of monoclonal antibodies for the immunoblot analyses.  相似文献   

18.
The accumulation of steviol glycosides (SGs) in cells of Stevia rebaudiana Bertoni both in vivo and in vitro was related to the extent of the development of the membrane system of chloroplasts and the content of photosynthetic pigments. Chloroplasts of the in vitro plants, unlike those of the intact plants, had poorly developed membrane system. The callus cells grown in the light contained proplastids of almost round shape and their thylakoid system was represented by short thylakoids sometimes forming a little number of grana consisting of 2–3 thylakoids. In cells of the etiolated in vitro regenerants and the callus culture grown in the dark, only proplastids practically lacking the membrane system were observed. All the chloroplasts having developed thylakoids and forming at least a little number of grana were equipped with photochemically active reaction centers of photosystems 1 and 2. Leaves of in vivo plants accumulated greater amount of the pigments than leaves of the in vitro plants. In both the callus culture grown in the light and the etiolated in vitro regenerants, the content of the pigments was one order of magnitude lower than that in leaves of the intact plants. The callus tissue grown in the dark contained merely trace amounts of the pigments. Leaves of the intact and the in vitro plants did not exhibit any significant differences in photosynthetic O2 evolution rate. However, photosynthetic O2 evolution rate in the callus cells was much lower than that in the differentiated plant cells. The in vitro cell cultures containing merely proplastids did not practically produce SGs. However, after transferring these cultures in the light, both the formation of chloroplasts and the production of SGs in them were detected.  相似文献   

19.
An existing HPLC-method for the analysis of stevioside from Stevia rebaudiana plants was adapted to analyse plant cell culture material. A new extraction method with methanol was developed. Exhaustive extraction of many samples (10 with our apparatus) can be done simultaneously. The quality of extraction is better than soxhlet extraction because the cold methanol was used. Samples with low stevioside content can be prepared with minimal loss. Substances which interfere with stevioside in HPLC analysis using UV detection are common in plant cell culture samples and hence need a special technique of elimination. This was accomplished by TLC-purification of the samples.  相似文献   

20.
Salinity and drought are major environmental factors limiting the growth and productivity of alfalfa worldwide as this economically important legume forage is sensitive to these kinds of abiotic stress. In this study, transgenic alfalfa lines expressing both tonoplast NXH and H+‐PPase genes, ZxNHX and ZxVP1‐1 from the xerophyte Zygophyllum xanthoxylum L., were produced via Agrobacterium tumefaciens‐mediated transformation. Compared with wild‐type (WT) plants, transgenic alfalfa plants co‐expressing ZxNHX and ZxVP1‐1 grew better with greater plant height and dry mass under normal or stress conditions (NaCl or water‐deficit) in the greenhouse. The growth performance of transgenic alfalfa plants was associated with more Na+, K+ and Ca2+ accumulation in leaves and roots, as a result of co‐expression of ZxNHX and ZxVP1‐1. Cation accumulation contributed to maintaining intracellular ions homoeostasis and osmoregulation of plants and thus conferred higher leaf relative water content and greater photosynthesis capacity in transgenic plants compared to WT when subjected to NaCl or water‐deficit stress. Furthermore, the transgenic alfalfa co‐expressing ZxNHX and ZxVP1‐1 also grew faster than WT plants under field conditions, and most importantly, exhibited enhanced photosynthesis capacity by maintaining higher net photosynthetic rate, stomatal conductance, and water‐use efficiency than WT plants. Our results indicate that co‐expression of tonoplast NHX and H+‐PPase genes from a xerophyte significantly improved the growth of alfalfa, and enhanced its tolerance to high salinity and drought. This study laid a solid basis for reclaiming and restoring saline and arid marginal lands as well as improving forage yield in northern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号