首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm.

Methodology/Principal Findings

Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm.

Conclusions

The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.  相似文献   

2.
Graminaceous plants release mugineic acid family phytosiderophores (MAs) to acquire iron from the soil. Here, we show that deoxymugineic acid (DMA) secretion from rice roots fluctuates throughout the day, and that vesicles accumulate in roots before MAs secretion. We developed transgenic rice plants that express rice nicotianamine (NA) synthase (NAS) 2 (OsNAS2) fused to synthetic green fluorescent protein (sGFP) under the control of its own promoter. In root cells, OsNAS2–sGFP fluorescence was observed in a dot‐like pattern, moving dynamically within the cell. This suggests that these vesicles are involved in NA and DMA biosynthesis. A tyrosine motif and a di‐leucine motif, which have been reported to be involved in cellular transport, are conserved in all identified NAS proteins in plants. OsNAS2 mutated in the tyrosine motif showed NAS activity and was localized to the vesicles; however, these vesicles stuck together and did not move. On the other hand, OsNAS2 mutated in the di‐leucine motif lost NAS activity and did not localize to these vesicles. The amounts of NA and DMA produced and the amount of DMA secreted by OsNAS2–sGFP plants were significantly higher than in non‐transformants and domain‐mutated lines, suggesting that OsNAS2–sGFP, but not the mutated forms, was functional in vivo. Overall, the localization of NAS to vesicles and the transport of these vesicles are crucial steps in NA synthesis, leading to DMA synthesis and secretion in rice.  相似文献   

3.
The expression of iron homeostasis-related genes during rice germination   总被引:1,自引:1,他引:0  
To characterize Fe homeostasis during the early stages of seed germination, a microarray analysis was performed. mRNAs extracted from fully mature seeds or seeds harvested 1–3 days after sowing were hybridized to a rice microarray containing approximately 22,000 cDNA oligo probes. Many Fe deficiency-inducible genes were strongly expressed throughout early seed germination. These results suggest that the demand for Fe is extremely high during germination. Under Fe-deficient conditions, rice produces and secretes a metal-cation chelator called deoxymugineic acid (DMA) to acquire Fe from the soil. In addition, DMA and its intermediate nicotianamine (NA) are thought to be involved in long distance Fe transport in rice. Using promoter-β-glucuronidase (GUS) analysis, we investigated the expression patterns during seed germination of the Fe deficiency-inducible genes OsNAS1, OsNAS2, OsNAS3, OsNAAT1, and OsDMAS1, which encode enzymes that participate in the biosynthesis of DMA, and the transporter genes OsYSL2 and OsIRT1, which are involved in Fe transport. All of these genes were expressed in germinating seeds prior to protrusion of the radicle. These results suggest that DMA and NA are produced and involved in Fe transport during germination. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Nicotianamine,a Novel Enhancer of Rice Iron Bioavailability to Humans   总被引:1,自引:0,他引:1  

Background

Polished rice is a staple food for over 50% of the world''s population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world.

Methodology/Principal Findings

We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1) fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA) concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1∶1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability) in promoting more ferritin synthesis.

Conclusions

Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance.  相似文献   

5.
Deoxymugineic acid (DMA) is a member of the mugineic acid family phytosiderophores (MAs), which are natural metal chelators produced by graminaceous plants. Rice secretes DMA in response to Fe deficiency to take up Fe in the form of Fe(III)–MAs complex. In contrast with barley, the roots of which secrete MAs in response to Zn deficiency, the amount of DMA secreted by rice roots was slightly decreased under conditions of low Zn supply. There was a concomitant increase in endogenous DMA in rice shoots, suggesting that DMA plays a role in the translocation of Zn within Zn-deficient rice plants. The expression of OsNAS1 and OsNAS2 was not increased in Zn-deficient roots but that of OsNAS3 was increased in Zn-deficient roots and shoots. The expression of OsNAAT1 was also increased in Zn-deficient roots and dramatically increased in shoots; correspondingly, HPLC analysis was unable to detect nicotianamine in Zn-deficient shoots. The expression of OsDMAS1 was increased in Zn-deficient shoots. Analyses using the positron-emitting tracer imaging system (PETIS) showed that Zn-deficient rice roots absorbed less 62Zn-DMA than 62Zn2+. Importantly, supply of 62Zn-DMA rather than 62Zn2+ increased the translocation of 62Zn into the leaves of Zn-deficient plants. This was especially evident in the discrimination center (DC). These results suggest that DMA in Zn-deficient rice plants has an important role in the distribution of Zn within the plant rather than in the absorption of Zn from the soil. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Motofumi Suzuki and Takashi Tsukamoto equally contributed to this work.  相似文献   

6.
We generated rice lines with increased content of nicotianamine (NA), a key ligand for metal transport and homeostasis. This was accomplished by activation tagging of rice nicotianamine synthase 2 (OsNAS2). Enhanced expression of the gene resulted in elevated NA levels, greater Zn accumulations and improved plant tolerance to a Zn deficiency. Expression of Zn-uptake genes and those for the biosynthesis of phytosiderophores (PS) were increased in transgenic plants. This suggests that the higher amount of NA led to greater exudation of PS from the roots, as well as stimulated Zn uptake, translocation and seed-loading. In the endosperm, the OsNAS2 activation-tagged line contained up to 20-fold more NA and 2.7-fold more zinc. Liquid chromatography combined with inductively coupled plasma mass spectrometry revealed that the total content of zinc complexed with NA and 2'-deoxymugineic acid was increased 16-fold. Mice fed with OsNAS2-D1 seeds recovered more rapidly from a zinc deficiency than did control mice receiving WT seeds. These results demonstrate that the level of bio-available zinc in rice grains can be enhanced significantly by activation tagging of OsNAS2.  相似文献   

7.
During the first 8 days of germination the Ricinus seedling is supplied with all nutrients by the endosperm via phloem transport. In 4- to 8-days-old seedlings the concentrations and contents of Fe, Cu, Mn and Zn, and nicotianamine (NA) in the endosperm, cotyledons, hypocotyl and roots were estimated. From the data obtained translocation rates and flow profiles for the metals were established. The main sink for Fe, Mn and Zn were the cotyledons whereas Cu was mainly imported into the hypocotyl. Maximum flow rates occurred between days 5 and 7, for Zn between days 6 and 8.The time kinetics of NA and divalent metal ion concentrations and contents are interpreted as co-transport. The role of NA as transport vehicle of micronutrients in the sieve tubes is discussed.  相似文献   

8.
Because micronutrients in human diets ultimately come from plant sources, malnutrition of essential minerals is a significant public health concern. By increasing the expression of nicotianamine synthase (NAS), we fortified the level of bioavailable iron in rice seeds. Activation of iron deficiency-inducible OsNAS2 resulted in a rise in Fe content (3.0-fold) in mature seeds. Its ectopic expression also increased that content. Enhanced expression led to higher tolerance of Fe deficiency and better growth under elevated pH. Mice fed with OsNAS2-D1 seeds recovered more rapidly from anemia, indicating that bioavailable Fe contents were improved by this increase in OsNAS2 expression.  相似文献   

9.
The metal micronutrients (MN) copper, iron, manganese, and zinc are transported via the phloem in the course of remobilization and circulation. The extent of these processes and transport species are still largely unknown. The Ricinus seedling was used to study the transport of these metal micronutrients as well as their interactions with the plant-endogenous chelator nicotianamine (NA) by daily measurements of the concentrations in the seedling parts and in the sieve tube sap obtained from a cut at the hypocotyl hook. The concentrations of these micronutrients in the phloem exudate decreased slightly from day 4 to day 8 of seedling development. Maximum values at day 4 were 65 μM for Zn, 63 μM for Fe, 27 μM for Cu, and 12 μM for Mn. The phloem transport rates reached maxima of 0.12 nmol cm?2h?1 for Zn and Fe at days 6 and 7, corresponding to the maximum exudation rates. The magnitude of these transport rates were in agreement with the net translocation rates estimated by analyses of the concentrations in the individual seedling parts. The NA content of the seedlings increased from day 0 (seed before sowing) until day 8, from 16 nmol to 474 nmol, which corresponds to an average net synthesis rate of about 100 nmol day?1 between the days 4 and 8. The NA:MN ratio was constant at 0.5 in the seedlings within this period. The NA concentrations and the sum of the concentrations of all four micronutrients in the sieve tube sap showed a constant ratio of 1.25 over the entire experimental period. Thus, both complex partners were subject to a cotransport in the phloem. Removal of the supplying endosperm led to a decrease in MN and NA concentrations in the sieve tube sap to about 80% while an average excess of NA of 1.1 was maintained. Since the concentrations of other amino acids, also possible chelators of metal micronutrients, fall to about 10% after removal of the endosperm, their role seems to be negligible as vehicles of MN transport in the phloem. Thus it is suggested that the divalent micronutrients considered in this study are loaded and maybe transported as NA complexes.  相似文献   

10.
水稻籽粒铁(Fe)缺乏和镉(Cd)含量超标是农业生产亟待解决的重要问题。以往研究表明,OsVIT1和OsVIT2是液泡铁转运蛋白,本研究选取野生型ZH11为背景材料,使用胚乳特异性表达启动子Glb-1构建了胚乳过表达OsVIT1和OsVIT2材料。RT-qPCR分析表明,OsVIT1在转化植株的胚乳和叶片过量表达,OsVIT2在转化植株的胚乳过量表达。通过田间试验,研究胚乳过表达OsVIT1和OsVIT2对水稻不同部位Fe和Cd积累的影响。结果表明,胚乳过表达OsVIT1显著降低籽粒中的Fe浓度约50%,显著增加秸秆的锌(Zn)、铜(Cu)浓度和籽粒中的Cu浓度,胚乳过表达OsVIT2显著降低籽粒中的Fe、Cd浓度约50%,显著增加秸秆的Fe浓度45%–120%。胚乳过表达OsVIT1和OsVIT2不影响水稻的农艺性状。总之,胚乳过表达OsVIT1和OsVIT2降低了水稻籽粒的Fe积累,未达到预期效果,胚乳过表达OsVIT2还降低籽粒的Cd积累,增加秸秆Fe积累,为水稻铁生物强化和降镉提供了借鉴。  相似文献   

11.
Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in many developing countries consists mainly of cereals. The inner part of cereal grain, the endosperm, is the part that is eaten after milling but contains only a quarter of the total grain Zn. Here, we present results demonstrating that endosperm Zn content can be enhanced through expression of a transporter responsible for vacuolar Zn accumulation in cereals. The barley (Hordeum vulgare) vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm‐specific D‐hordein promoter. Transformed plants exhibited no significant change in growth but had higher total grain Zn concentration, as measured by ICP‐OES, compared to parental controls. Compared with Zn, transformants had smaller increases in concentrations of Cu and Mn but not Fe. Staining grain cross sections with the Zn‐specific stain DTZ revealed a significant enhancement of Zn accumulation in the endosperm of two of three transformed lines, a result confirmed by ICP‐OES in the endosperm of dissected grain. Synchrotron X‐ray fluorescence analysis of longitudinal grain sections demonstrated a redistribution of grain Zn from aleurone to endosperm. We argue that this proof‐of‐principle study provides the basis of a strategy for biofortification of cereal endosperm with Zn.  相似文献   

12.
Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control of the maize ubiquitin1 promoter and comparing the mobilization and loading of different metals. Plants expressing HvYS1 showed modest increases in Fe uptake, root‐to‐shoot translocation, seed accumulation and endosperm loading, but without any change in the uptake and root‐to‐shoot translocation of Zn, Mn or Cu, confirming the selective transport of Fe. The concentrations of Zn and Mn in the endosperm did not differ significantly between the wild‐type and HvYS1 lines, but the transgenic endosperm contained significantly lower concentrations of Cu. Furthermore, the transgenic lines showed a significantly reduced Cd uptake, root‐to‐shoot translocation and accumulation in the seeds. The underlying mechanism of metal uptake and translocation reflects the down‐regulation of promiscuous endogenous metal transporters revealing an internal feedback mechanism that limits seed loading with Fe. This promotes the preferential mobilization and loading of Fe, therefore displacing Cu and Cd in the seed.  相似文献   

13.
Currently, there are few studies concerning the function of heavy metal ATPase 2 (HMA2), particularly in monocotyledons, and the potential application of this protein in biofortification and phytoremediation. Thus, we isolated and characterized the TaHMA2 gene from wheat (Triticum aestivum L.). Our results indicate that TaHMA2 is localized to the plasma membrane and stably expressed, except in the nodes, which showed relatively high expression. Zinc/cadmium (Zn/Cd) resistance was observed in TaHMA2‐transformed yeast. The over‐expression of TaHMA2 increased the elongation and decreased the seed‐setting rate in rice (Oryza sativa L.), but not Arabidopsis thaliana, tobacco (Nicotiana tabacum L.) or wheat. TaHMA2 over‐expression also improved root‐shoot Zn/Cd translocation, especially in rice. The seeds of transgenic rice and wheat, not tobacco, showed decreased Zn concentrations. The Zn concentration was decreased in all parts of the transgenic rice seeds, but was decreased only in the ventral endosperm of wheat, which showed an increased Zn concentration in the embryo and aleurone. The over‐expression of TaHMA2 improved plant tolerance under moderate Zn stress and Zn deficiency, but Zn and Cd resistance decreased under high levels of Zn and Cd stress, respectively. The Cd concentration in transgenic rice seedlings was dramatically increased under Zn deficiency. Thus, over‐expression of TaHMA2 showed a more obvious phenotype in monocotyledons than in dicotyledons. These findings provide important information for TaHMA2, and more efforts should be made in the future to characterize the reduced Zn concentration in TaHMA2 transgenic grains and the diversity of TaHMA2 substrate specificity.  相似文献   

14.
15.
The increasing [CO2] in the atmosphere increases crop productivity. However, grain quality of cereals and pulses are substantially decreased and consequently compromise human health. Meta‐analysis techniques were employed to investigate the effect of elevated [CO2] (e[CO2]) on protein, zinc (Zn), and iron (Fe) concentrations of major food crops (542 experimental observations from 135 studies) including wheat, rice, soybean, field peas, and corn considering different levels of water and nitrogen (N). Each crop, except soybean, had decreased protein, Zn, and Fe concentrations when grown at e[CO2] concentration (≥550 μmol/mol) compared to ambient [CO2] (a[CO2]) concentration (≤380 μmol/mol). Grain protein, Zn, and Fe concentrations were reduced under e[CO2]; however, the responses of protein, Zn, and Fe concentrations to e[CO2] were modified by water stress and N. There was an increase in Fe concentration in soybean under medium N and wet conditions but nonsignificant. The reductions in protein concentrations for wheat and rice were ~5%–10%, and the reductions in Zn and Fe concentrations were ~3%–12%. For soybean, there was a small and nonsignificant increase of 0.37% in its protein concentration under medium N and dry water, while Zn and Fe concentrations were reduced by ~2%–5%. The protein concentration of field peas decreased by 1.7%, and the reductions in Zn and Fe concentrations were ~4%–10%. The reductions in protein, Zn, and Fe concentrations of corn were ~5%–10%. Bias in the dataset was assessed using a regression test and rank correlation. The analysis indicated that there are medium levels of bias within published meta‐analysis studies of crops responses to free‐air [CO2] enrichment (FACE). However, the integration of the influence of reporting bias did not affect the significance or the direction of the [CO2] effects.  相似文献   

16.
Micronutrient malnutrition, and particularly deficiency in zinc (Zn) and iron (Fe), afflicts over three billion people worldwide, and nearly half of the world’s cereal-growing area is affected by soil Zn deficiency. Wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the progenitor of domesticated durum wheat and bread wheat, offers a valuable source of economically important genetic diversity including grain mineral concentrations. Twenty two wild emmer wheat accessions, representing a wide range of drought resistance capacity, as well as two durum wheat cultivars were examined under two contrasting irrigation regimes (well-watered control and water-limited), for grain yield, total biomass production and grain Zn, Fe and protein concentrations. The wild emmer accessions exhibited high genetic diversity for yield and grain Zn, Fe and protein concentrations under both irrigation regimes, with a considerable potential for improvement of the cultivated wheat. Grain Zn, Fe and protein concentrations were positively correlated with one another. Although irrigation regime significantly affected ranking of genotypes, a few wild emmer accessions were identified for their advantage over durum wheat, having consistently higher grain Zn (e.g., 125 mg kg?1), Fe (85 mg kg?1) and protein (250 g kg?1) concentrations and high yield capacity. Plants grown from seeds originated from both irrigation regimes were also examined for Zn efficiency (Zn deficiency tolerance) on a Zn-deficient calcareous soil. Zinc efficiency, expressed as the ratio of shoot dry matter production under Zn deficiency to Zn fertilization, showed large genetic variation among the genotypes tested. The source of seeds from maternal plants grown under both irrigation regimes had very little effect on Zn efficiency. Several wild emmer accessions revealed combination of high Zn efficiency and drought stress resistance. The results indicate high genetic potential of wild emmer wheat to improve grain Zn, Fe and protein concentrations, Zn deficiency tolerance and drought resistance in cultivated wheat.  相似文献   

17.
The influence of Fe nutrition on the distribution of the heavy metals Fe, Mn, Zn, and Cu and of the heavy metal chelators nicotianamine (NA) and citrate in 6 different shoot and 3 different root parts and in xylem exudate of a NA-containing tomato wild type and its NA-less mutant was investigated. Under the same Fe supply the mutant showed higher Fe, Mn, and Zn concentrations in all organs investigated, with exception of the shoot apex. The Cu concentration in the mutant was only in root parts higher than in the wild type but much lower in leaves. Analyses of xylem exudate showed that Fe, Mn, and Zn were readily translocated by both genotypes from the roots to the shoot at all levels of Fe supply, whereas in the absence of NA, Cu was only poorly transported. Citrate as main Fe chelator in the xylem was present in high concentrations in xylem exudate of the wild type under low Fe supply but in the mutant also at 10 M FeEDTA. NA occurred in xylem exudate of the wild type in concentrations high enough to chelate heavy metal ions.Generally, high Fe supply induced a decrease of Mn, Cu, and Zn concentrations in all organs of the wild type whereas high concentrations were observed in most cases under Fe deficiency. A positive correlation between Fe supply and NA concentration existed only in the shoot apex and in the xylem exudate of wild type plants. From the correlation between Cu and NA translocation and from the high stability constant of the NA-Cu-complex (log K=18.6) it is concluded that NA is a chelator for Cu in the xylem, whereas the translocation of Fe, Mn, and Zn is independent of NA.  相似文献   

18.
Arabinoxylan (AX) is the dominant component within wheat (Triticum aestivum L.) endosperm cell walls, accounting for 70% of the polysaccharide. The viscosity of aqueous extracts from wheat grain is a key trait influencing the processing for various end uses, and this is largely determined by the properties of endosperm AX. We have previously shown dramatic effects on endosperm AX in transgenic wheat by down‐regulating either TaGT43_2 or TaGT47_2 genes (orthologues to IRX9 and IRX10 in Arabidopsis, respectively) implicated in AX chain extension and the TaXAT1 gene responsible for monosubstitution by 3‐linked arabinose. Here, we use these transgenic lines to investigate the relationship between amounts of AX in soluble and insoluble fractions, the chain‐length distribution of these measured by intrinsic viscosity and the overall effect on extract viscosity. In transgenic lines expressing either the TaGT43_2 or TaGT47_2 RNAi transgenes, the intrinsic viscosities of water‐extractable (WE‐AX) and of a water‐insoluble alkaline‐extracted fraction (AE‐AX) were decreased by between 10% and 50% compared to control lines. In TaXAT1 RNAi lines, there was a 15% decrease in intrinsic viscosity of WE‐AX but no consistent effect on that of AE‐AX. All transgenic lines showed decreases in extract viscosity with larger effects in TaGT43_2 and TaGT47_2 RNAi lines (by up to sixfold) than in TaXAT1 RNAi lines (by twofold). These effects were explained by the decreases in amount and chain length of WE‐AX, with decreases in amount having the greater influence. Extract viscosity from wheat grain can therefore be greatly decreased by suppression of single gene targets.  相似文献   

19.
The influence of the endogenous micronutrient chelator, nicotianamine(NA), and of Cu nutrition on the distribution of Cu, Fe, Mn,Zn, and NA was investigated in eight different shoot organs,roots, and in xylem exudates of the NA-containing tomato wildtype Lycopersicon esculentum Mill. cv. Bonner Beste and itsNA-less mutant chloronerva. Contrary to the other heavy metals, copper transport in thexylem was inefficient in the mutant and was enhanced by an applicationof NA to the roots or leaves in proportion to the applied NAconcentration. Also, with NA application, the Cu concentrationin mutant roots decreased significantly, and increased in theshoot. Fe and Mn transport in the xylem was greater in the mutantthan in the wild type, and was decreased in the mutant by theapplication of NA to the leaves. Zn transport in the xylem wasthe same in both genotypes and was unaffected by NA application.After application of NA to leaves and roots of the mutant itwas possible to detect NA in the xylem exudate (up to 2nmolNA(g–1 root FWh–1). High Cu supply (3 µM) resulted in higher Cu and Mn concentrationsin all organs of the wild type as compared to mutant organs,but Fe concentrations were not influenced. Under high Cu supply(3µM) the NA concentrations of roots and the three youngestleaves of the wild type were higher than under normal Cu supply(0.3 µM). The highest concentrations were found in theshoot apex under both Cu conditions (up to 361 nmol NAg–1FW). It is concluded from our experiments and from the high stabilityconstant of the NA-Cu-complex (log K= 18.6) that NA is involvedin Cu translocation whereas for the translocation of Fe, Mn,and Zn, NA is not essential. Key words: Copper transport, micronutrients, mobilization, nicotianamine, xylem  相似文献   

20.
Rice plants (Oryza sativa L.) take up iron using iron-chelating compounds known as mugineic acid family phytosiderophores (MAs). In the biosynthetic pathway of MAs, nicotianamine aminotransferase (NAAT) catalyses the key step from nicotianamine to the 3′′-keto form. In the present study, we identified six rice NAAT genes (OsNAAT1–6) by screening a cDNA library made from Fe-deficient rice roots and by searching databases. Among the NAAT homologues, OsNAAT1 belongs to a subgroup containing barley functional NAAT (HvNAAT-A and HvNAAT-B) as well as a maize homologue cloned by cDNA library screening (ZmNAAT1). Northern blot and RT-PCR analysis showed that OsNAAT1, but not OsNAAT26, was strongly up-regulated by Fe deficiency, both in roots and shoots. The OsNAAT1 protein had NAAT enzyme activity in vitro, confirming that the OsNAAT1 gene encodes functional NAAT. Promoter–GUS analysis revealed that OsNAAT1 was expressed in companion and pericycle cells adjacent to the protoxylem of Fe-sufficient roots. In addition, expression was induced in all cells of Fe-deficient roots, with particularly strong GUS activity evident in the companion and pericycle cells. OsNAAT1 expression was also observed in the companion cells of Fe-sufficient shoots, and was clearly induced in all the cells of Fe-deficient leaves. These expression patterns highly resemble those of OsNAS1, OsNAS2 and OsDMAS1, the genes responsible for MAs biosynthesis for Fe acquisition. These findings strongly suggest that rice synthesises MAs in whole Fe-deficient roots to acquire Fe from the rhizosphere, and also in phloem cells to maintain metal homeostasis facilitated by MAs-mediated long-distance transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号