首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Brassica napus L. is an important oil crop worldwide and is the main raw material for biofuel. Seed weight and seed size are the main contributors to seed yield. DA1 (DA means big in Chinese) is an ubiquitin receptor and negatively regulates seed size. Down‐regulation of AtDA1 in Arabidopsis leads to larger seeds and organs by increasing cell proliferation in integuments. In this study, BnDA1 was down‐regulated in B. napus by over expressed of AtDA1R358K, which is a functional deficiency of DA1 with an arginine‐to‐lysine mutation at the 358th amino acid. The results showed that the biomass and size of the seeds, cotyledons, leaves, flowers and siliques of transgenic plants all increased significantly. In particular, the 1000 seed weight increased 21.23% and the seed yield per plant increased 13.22% in field condition. The transgenic plants had no negative traits related to yield. The candidate gene association analysis demonstrated that the BnDA1 locus was contributed to the seeds weight. Therefore, our study showed that regulation of DA1 in B. napus can increase the seed yield and biomass, and DA1 is a promising target for crop improvement.  相似文献   

3.
4.
5.
6.
Seed oil content is an important agronomic trait in rapeseed. However, our understanding of the regulatory processes controlling oil accumulation is still limited. Using two rapeseed lines (zy036 and 51070) with contrasting oil content, we found that maternal genotype greatly affects seed oil content. Genetic and physiological evidence indicated that difference in the local and tissue-specific photosynthetic activity in the silique wall (a maternal tissue) was responsible for the different seed oil contents. This effect was mimicked by in planta manipulation of silique wall photosynthesis. Furthermore, the starch content and expression of the important lipid synthesis regulatory gene WRINKLED1 in developing seeds were linked with silique wall photosynthetic activity. 454 pyrosequencing was performed to explore the possible molecular mechanism for the difference in silique wall photosynthesis between zy036 and 51070. Interestingly, the results suggested that photosynthesis-related genes were over-represented in both total silique wall expressed genes and genes that were differentially expressed between genotypes. A potential regulatory mechanism for elevated photosynthesis in the zy036 silique wall is proposed on the basis of knowledge from Arabidopsis. Differentially expressed ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-related genes were used for further investigations. Oil content correlated closely with BnRBCS1A expression levels and Rubisco activities in the silique wall, but not in the leaf. Taken together, our results highlight an important role of silique wall photosynthesis in the regulation of seed oil content in terms of maternal effects.  相似文献   

7.
8.
9.
10.
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)‐sensing mechanism plays an essential role in the Pi‐signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we discovered that the down‐regulation of OsSPX1 caused reduction of seed‐setting rate and filled grain number. Through examination of anthers and pollens of the transgenic and wild‐type plants by microscopy, we found that the antisense of OsSPX1 gene led to semi‐male sterility, with lacking of mature pollen grains and phenotypes with a disordered surface of anthers and pollens. We further conducted rice whole‐genome GeneChip analysis to elucidate the possible molecular mechanism underlying why the down‐regulation of OsSPX1 caused deficiencies in anthers and pollens and lower seed‐setting rate in rice. The down‐regulation of OsSPX1 significantly affected expression of genes involved in carbohydrate metabolism and sugar transport, anther development, cell cycle, etc. These genes may be related to pollen fertility and male gametophyte development. Our study demonstrated that down‐regulation of OsSPX1 disrupted rice normal anther and pollen development by affecting carbohydrate metabolism and sugar transport, leading to semi‐male sterility, and ultimately resulted in low seed‐setting rate and grain yield.  相似文献   

11.
  • Melatonin has emerged as an essential molecule in plants, due to its role in defence against metal toxicity. Aluminium (Al) and cadmium (Cd) toxicity inhibit rapeseed seedling growth.
  • In this study, we applied different doses of melatonin (50 and 100 µm ) to alleviate Al (25 µm ) and Cd (25 µm ) stress in rapeseed seedlings. Results show that Al and Cd caused toxicity in rapeseed seedling, as evidenced by a decrease in height, biomass and antioxidant enzyme activity.
  • Melatonin increased the expression of melatonin biosynthesis‐related Brassica napus genes for caffeic acid O‐methyl transferase (BnCOMT) under Al and Cd stress. The genes BnCOMT‐1, BnCOMT‐5 and BnCOMT‐8 showed up‐regulated expression, while BnCOMT‐4 and BnCOMT‐6 were down‐regulated during incubation in water. Melatonin application increased the germination rate, shoot length, root length, fresh and dry weight of seedlings. Melatonin supplementation under Al and Cd stress increased superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, proline, chlorophyll and anthocyanin content, as well as photosynthesis rate. Both Cd and Al treatments significantly increased hydrogen peroxide and malondialdehyde levels in rapeseed seedlings, which were strictly counterbalanced by melatonin. Analysis of Cd and Al in different subcellular compartments showed that melatonin enhanced cell wall and soluble fractions, but reduced the vacuolar and organelle fractions in Al‐ and Cd‐treated seedlings.
  • These results suggest that melatonin‐induced improvements in antioxidant potential, biomass, photosynthesis rate and successive Cd and Al sequestration play a pivotal role in plant tolerance to Al and Cd stress. This mechanism may have potential implications in safe food production.
  相似文献   

12.
13.
Large‐seeded plants may suffer seed dispersal limitation in human‐modified landscapes if seed dispersers are absent or unable to disperse their seeds. We investigated dispersal limitation for the large‐seeded tree Virola surinamensis in a human‐modified landscape in southern Costa Rica. During two fruiting seasons, we monitored crop size, seed removal rates, the number of fruiting conspecifics within 100 m, and feeding visitation rates by frugivores at trees located in high and low forest disturbance conditions. Seed removal rates and the total number of seeds removed were high regardless of the disturbance level, but these parameters increased with tree crop size and decreased with the number of fruiting V. surinamensis trees within a 100 m radius. Trees at low disturbance levels were more likely to be visited by seed dispersers. Black mandibled toucans (Ramphastos ambiguus) and spider monkeys (Ateles geoffroyi) were the most important seed dispersers, based on visitation patterns and seed removal rates. Spider monkey feeding visits were more frequent at high disturbance levels, but the monkeys preferentially visited isolated trees with large yields and surrounded by a low number of fruiting Virola trees within 100 m. Toucan visitation patterns were not constrained by any of the predictors and they visited trees equally across the landscape. We suggest that isolated and highly fecund Virola trees are an important food resource for spider monkeys in human‐modified landscapes and that toucans can provide resilience against seed dispersal limitations for large‐seeded plants in human‐modified landscapes in the absence of hunting.  相似文献   

14.
15.
BACKGROUND AND AIMS: A brassinosteroid-deficient mutant faba bean (Vicia faba 'Rinrei') shows dwarfism in many organs including pods and seeds. 'Rinrei' has normal-sized seeds together with dwarf seeds, suggesting that dwarfism in the seed may be indirectly caused by brassinosteroid deficiency. The mechanism of seed size reduction in this mutant was investigated. METHODS: The associations between seed orientation in the pod, seed numbers per pod and pod lengths with seed sizes were analysed in 'Rinrei' and the wild-type plant. KEY RESULTS: 'Rinrei' seeds are tightly arranged in pods containing two or three seeds. Seed size decreased as the number of seeds per pod increased or as the length of the pod decreased. Where no physical restriction occurred between seeds in a pod, the wild-type faba bean seeds had a nearly constant size regardless of seed number per pod or pod length. 'Rinrei' seeds in pods containing single seeds were the same size as wild-type seeds. Brassinolide treatment increased the seed size and the length of pods containing three seeds in 'Rinrei'. CONCLUSION: Seed size of 'Rinrei' is mainly regulated through a reduction of pod length due to brassinosteroid deficiency; physical restriction within pods causes a reduction in seed size. These results suggest a possible mechanism for increasing faba bean yields to optimal levels.  相似文献   

16.
17.
Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over‐expression induced production of more cells in the seed coat, leading to an 11–48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over‐expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over‐expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.  相似文献   

18.
Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down‐regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1‐A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1‐A‐HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1‐A expression levels between genotypes, with TaDA1‐A‐HapI resulting in lower TaDA1‐A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1‐A physically interacts with TaGW2‐B. The additive effects of TaDA1‐A and TaGW2‐B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down‐regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi‐environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild‐type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.  相似文献   

19.
Plant seed oil‐based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum‐derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co‐expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol‐3‐phosphate dehydrogenase (GPD1) genes under the control of seed‐specific promoters. Plants co‐expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild‐type plants. Further, DGAT1‐ and GDP1‐co‐expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild‐type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1‐ and GPD1‐co‐expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号