首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although non‐segmental vitiligo (NSV) results from the autoimmune destruction of melanocytes, the detailed immune mechanisms have not yet been fully elucidated. Th17 cells have been identified to be implicated in human autoimmune diseases. In this study, the frequencies of peripheral blood Th17 cells and serum levels of IL‐17A and Th17 cell‐related cytokines were examined in 45 patients with active NSV compared to 45 race‐, gender‐, and age‐matched healthy controls. Our results showed increased circulating Th17 cell frequencies and elevated serum IL‐17A, TGF‐β1, and IL‐21 levels in patients with NSV. Meanwhile, the increased Th17 cell frequencies are positively correlated with serum TGF‐β1 level, and the body surface area of lesions is positively correlated with elevated TGF‐β1 and IL‐21 levels and Th17 cell frequencies. Furthermore, positive correlation was identified between Th17 and Th1 cell frequencies in patients with NSV. These results further indicate the potential involvement of Th17 cells and the collaborative contribution of Th17 and Th1 in NSV development, and suggest that the elevated serum TGF‐β1 and IL‐21 levels could contribute to enhanced Th17 cell differentiation in NSV.  相似文献   

2.
This cross‐sectional multicenter study aimed to evaluate serum CXCL‐10, as an activity marker for vitiligo, and compare it with other putative serum and tissue markers. Serum CXCL‐10 was compared to interferon gamma (IFN‐γ), interleukin 6 (IL‐6), and IL‐17 using ELISA in 55 non‐segmental vitiligo patients (30 active and 25 stable) and 30 healthy controls. Marginal skin biopsy was taken for immunohistochemical evaluation of CD8+T cells and CXCL‐10+ve cells. Serum levels of CXCL‐10, IL‐17, and IL‐6 were elevated in all vitiligo patients compared to controls (p < .05). All investigated serum markers were higher in active versus stable vitiligo. Tissue expression of CXCL‐10+ve cells and CD8+ve T cells was stronger in vitiligo patients compared to controls, and tissue CXCL‐10+ve cell expression was stronger in active versus stable cases. Positive correlations were noted between the different serum and tissue markers. CXCL‐10 was the most specific, whereas IL‐6 was the most sensitive serum marker to distinguish active from stable disease.  相似文献   

3.
Interleukin‐17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL‐17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL‐17A‐producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non‐T non‐B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL‐17 family cytokines other than IL‐17A are also expressed by CD4+ T cells: IL‐17E by Th2 cells and IL‐17F by Th17 cells. IL‐17A and IL‐17F induce expression of pro‐inflammatory cytokines to induce inflammation and anti‐microbial peptides to kill pathogens, whereas IL‐17E induces allergic inflammation. However, the functions of other IL‐17 family cytokines have been unclear. Recent studies have shown that IL‐17B and IL‐17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL‐17E and IL‐17F by epithelial cells has also been reported and epithelial cell‐derived IL‐17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell‐derived IL‐17A and non‐hematopoietic cell‐derived IL‐17B, IL‐17C, IL‐17D, IL‐17E and IL‐17F in infections and propose functional differences between these two categories of IL‐17 family cytokines.  相似文献   

4.
Although lymphatic neovascularization may be a key feature of chronic inflammation, it is almost unexplored in primary Sjögren's syndrome (pSS). A recent study revealed a pro‐lymphangiogenic function of interleukin (IL)‐17, a leading player in pSS pathogenesis. The aims of the study were to investigate lymphangiogenic mediators and lymphatic vasculature in pSS, as well as their possible association with IL‐17. Circulating lymphatic endothelial precursor cells (LEPCs) and Th17 cells were enumerated in pSS patients and healthy donors. VEGF‐C and IL‐17 levels were assessed in paired serum samples. Lymphatic vasculature, VEGF‐C/VEGF receptor (VEGFR)‐3 and IL‐17 were evaluated in pSS minor salivary glands (MSGs) and compared with normal and non‐specific chronic sialadenitis (NSCS) MSGs. Circulating LEPCs were expanded in pSS and correlated with circulating Th17 cells, IL‐17 and VEGF‐C. In pSS MSGs, a newly formed lymphatic capillary network was found within periductal inflammatory infiltrates and the number of interlobular lymphatic vessels was significantly increased compared with normal and NSCS MSGs. Strong VEGF‐C expression was detected in pSS ductal epithelial cells and periductal inflammatory cells. Numerous VEGFR‐3+ infiltrating mononuclear cells were exclusively observed in pSS MSGs. VEGFR‐3 expression was strongly increased in lymphatic capillaries of pSS MSGs. IL‐17+ inflammatory cells were preferentially observed around lymphatic vessels in pSS MSGs. This study supports the notion that lymphvasculogenesis and lymphangiogenesis are active in pSS, thereby unmasking a novel aspect of disease pathogenesis. In addition, our results suggest another possible pathogenic role of IL‐17 in pSS, further supporting its therapeutic targeting in this disease.  相似文献   

5.
6.
The aim of this study was to determine whether CD4(+) IL-17A(+) Th17 cells infiltrate vitiligo skin and to investigate whether the proinflammatory cytokines related to Th17 cell influence melanocyte enzymatic activity and cell fate. An immunohistochemical analysis showed Th17 cell infiltration in 21 of 23 vitiligo skin samples in addition to CD8(+) cells on the reticular dermis. An in vitro analysis showed that the expression of MITF and downstream genes was downregulated in melanocytes by treatment with interleukin (IL)-17A, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Treatment with these cytokines also induced morphological shrinking in melanocytes, resulting in decreased melanin production. In terms of local cytokine network in the skin, IL-17A dramatically induced IL-1β, IL-6, and TNF-α production in skin-resident cells such as keratinocytes and fibroblasts. Our results provide evidence of the influence of a complex Th17 cell-related cytokine environment in local depigmentation in addition to CD8(+) cell-mediated melanocyte destruction in autoimmune vitiligo.  相似文献   

7.
Interleukin‐1 (IL‐1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL‐1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL‐1 receptor type 1 (IL‐1R1)‐dependent IL‐1β expression by myeloid cells in the draining lymph nodes. This myeloid‐derived IL‐1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM‐CSF+ Th17 cell subset, thereby enhancing its encephalitogenic potential. Lack of expansion of GM‐CSF‐producing Th17 cells led to ameliorated disease in mice deficient for IL‐1R1 specifically in T cells. Importantly, pathogenicity of IL‐1R1‐deficient T cells was fully restored by IL‐23 polarization and expansion in vitro. Therefore, our data demonstrate that IL‐1 functions as a mitogenic mediator of encephalitogenic Th17 cells rather than qualitative inducer of their generation.  相似文献   

8.
T helper (Th) 17 cells are reportedly effector T cells that produce interleukin (IL)‐17A and play a significant role in the development of autoimmune diseases and immune responses for antimicrobial host defense. Production of IL‐17A in chronic active Epstein–Barr virus infection (CAEBV) was studied to investigate its contribution to pathogenesis of this disease. Significantly more IL‐17A‐producing cells were detected in the peripheral blood of CAEBV patients than in that of healthy controls, although a significant difference in serum IL‐17A production was not confirmed. Of the IL‐17A‐producing cells, 91.8% were cluster of differentiation (CD)4‐positive Th17 cells. Moreover, there were significantly more IL‐17A‐producing cells among CD4+ cells in peripheral blood of CAEBV patients than in that of controls (1.97 ± 0.69% vs. 1.09 ± 0.53%, P = 0.0073). These data suggest that IL‐17A‐producing cells may influence the pathophysiology of CAEBV.  相似文献   

9.
The imbalance of Th17/Treg cell populations has been suggested to be involved in the regulation of rheumatoid arthritis (RA) pathogenesis; however, the mechanism behind this phenomenon remains unclear. Recent studies have shown how microRNAs (miRNAs) are important regulators of immune responses and are involved in the development of a variety of inflammatory diseases, including RA. In this study, we demonstrated that the frequencies of CD3+CD4+IL‐17+Th17 cells were significantly higher, and CD4+CD25+FOXP3+ Treg cells significantly lower in peripheral blood mononuclear cells from RA patients. Detection of cytokines from RA patients revealed an elevated panel of pro‐inflammatory cytokines, including IL‐17, IL‐6, IL‐1β, TNF‐α and IL‐22, which carry the inflammatory signature of RA and are crucial in the differentiation and maintenance of pathogenic Th17 cells and dysfunction of Treg cells. However, the level of miR‐21 was significantly lower in RA patients, accompanied by the increase in STAT3 expression and activation, and decrease in STAT5/pSTAT5 protein and Foxp3 mRNA levels. Furthermore, lipopolysaccharide stimulation up‐regulated miR‐21 expression from healthy controls, but down‐regulated miR‐21 expression from RA patients. Therefore, we speculate that miR‐21 may be part of a negative feedback loop in the normal setting. However, miR‐21 levels decrease significantly in RA patients, suggesting that this feedback loop is dysregulated and may contribute to the imbalance of Th17 and Treg cells. MiR‐21 may thus serve as a novel regulator in T‐cell differentiation and homoeostasis, and provides a new therapeutic target for the treatment of RA.  相似文献   

10.
Th17 cells contribute to the development of autoimmune diseases by secreting interleukin‐17 (IL‐17), which activates its receptor (IL‐17R) that is expressed on epithelial cells, macrophages, microglia, and resident neuroectodermal cells. However, the mechanisms through which IL‐17R‐mediated signaling contributes to the development of autoimmune disease have not been completely elucidated. Here, we demonstrate that Raf‐1 kinase inhibitor protein (RKIP) deficiency in mice ameliorates the symptoms of experimental autoimmune encephalomyelitis (EAE). Adoptive T‐cell‐transfer experiments demonstrate that RKIP plays a predominant role in Th17‐mediated, but not in Th1‐mediated immune responses. RKIP deficiency has no effect on Th17‐cell differentiation ex vivo, nor does it affect Th17‐cell differentiation in EAE mice. However, RKIP significantly promotes IL‐17R‐induced proinflammatory cytokine and chemokine production. Mechanistically, RKIP directly interacts with IL‐17RA and Act1 to promote the formation of an IL‐17R‐Act1 complex, resulting in enhanced MAPK‐ and P65‐mediated NF‐κB activation and downstream cytokine production. Together, these findings indicate that RKIP functions as an essential modulator of the IL‐17R‐Act1 axis in IL‐17R signaling, which promotes IL‐17‐induced inflammation and autoimmune neuroinflammation.  相似文献   

11.
This study was to explore a potential role of epithelium‐derived cytokines in Th17 differentiation. Th17 induction was evaluated by murine CD4+ T cells treated with different combinations of five inducing cytokines, or conditioned media of human corneal epithelial cells (HCECs) exposed to a variety of stimuli. Th17 differentiation was determined by measuring Th17 associated molecules, IL‐17A, IL‐17F, IL‐22, CCL‐20, and STAT3 at mRNA and protein levels, and numbers of IL‐17‐producing T cells by real‐time PCR, and cytokine immunobead and ELISPOT assays, respectively. IL‐23 was the strongest inducer for expanding Th17 cells in the presence of TGF‐β1 + IL‐6; and IL‐1β was the strongest Th17 amplifier in the presence of TGF‐β1 + IL‐6 + IL‐23. These inducing cytokines were found to be significantly stimulated in HCECs challenged by hyperosmotic media (450 mOsM), microbial components (polyI:C, flagellin, R837, and other TLR ligands) and TNF‐α. Interestingly, when incubated with conditioned media of HCECs irritated by polyI:C or TNF‐α, CD4+ T cells displayed increased mRNA levels of IL‐17A, IL‐17F, IL‐22, CCL‐20, and STAT3, increased IL‐17 protein in the supernatant, and increased numbers of IL‐17‐producing T cells (Th17 cells). These findings demonstrate for the first time that Th17 differentiation can be promoted by cytokines produced by corneal epithelium that are exposed to hyperosmotic, microbial, and inflammatory stimuli. J. Cell. Physiol. 222:95–102, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Cholangiocarcinoma (CCA) associated with liver fluke infection involves inflammatory and immune processes; however, whether these involve the proinflammatory cytokine IL‐17A and proliferative cytokine IL‐22 remains unclear. Here, numbers of IL‐22‐ and IL‐17A‐producing Th cells and cytokine concentrations in 30 patients with CCA and long‐term liver fluke infection, 40 patients with liver‐fluke infection but not CCA, and 16 healthy controls were compared. Analyses were performed using immunohistochemistry, flow cytometry, ELISA and RT‐PCR. Immunohistochemical staining showed weaker expression of IL‐22 and IL‐17A in patients with CCA with than in those without liver fluke infection (P < 0.01). Flow cytometry revealed significantly greater median proportions of IL‐22‐producing T helper cells in patients with CCA (2.2%) than in those without it (0.69%) or controls (0.4%, P < 0.001). Similar results were obtained for IL‐17A‐producing T helper cells. ELISA revealed plasma concentrations of IL‐22 were 1.3‐fold higher in patients with CCA than in those without it and 4.6‐fold higher than in controls (P < 0.001). Plasma concentrations of IL‐17A were 2.5‐fold higher in patients with CCA than in those without it, and 21‐fold higher than in controls (P < 0.001). Amounts of IL‐22 and IL‐17A mRNAs in blood were significantly higher in patients with CCA than in the other two groups. Proportions of CD4+CD45RO+ T cells producing IL‐22 correlated with proportions producing IL‐17A (r = 0.759; P < 0.001), and plasma concentrations of IL‐22 correlated with those of IL‐17A (r = 0.726; P < 0.001). These results suggest that both IL‐17A and IL‐22 affect development of CCA related to liver fluke infection.
  相似文献   

13.
Silicosis is an occupational lung disease caused by the inhalation of silica dust and characterized by lung inflammation and fibrosis. Interleukin (IL)‐1β is induced by silica and functions as the key pro‐inflammatory cytokine in this process. The Th17 response, which is induced by IL‐1β, has been reported very important in chronic human lung inflammatory diseases. To elucidate the underlying mechanisms of IL‐1β and IL‐17 in silicosis, we used anakinra and an anti‐IL‐17 monoclonal antibody (mAb) to block the receptor of IL‐1β (IL‐RI) and IL‐17, respectively, in a mouse model of silicosis. We observed increased IL‐1β expression and an enhanced Th17 response after silica instillation. Treatment with an IL‐1 type I receptor (IL‐1RI) antagonist anakinra substantially decreased silica‐induced lung inflammation and the Th17 response. Lung inflammation and the accumulation of inflammatory cells were attenuated in the IL‐17‐neutralized silicosis group. IL‐17 may promote lung inflammation by modulating the differentiation of Th1 and regulatory T cells (Tregs) and by regulating the production of IL‐22 and IL‐1β during the lung inflammation of silicosis. Silica may induce IL‐1β production from alveolar macrophages and promote inflammation by initiating a Th17 response via an IL‐1β/IL‐1RI‐dependent mechanism. The Th17 response could induce lung inflammation during the pathogenesis of silicosis by regulating the homoeostasis of the Th immune responses and affecting the production of IL‐22 and IL‐1β. This study describes a potentially important inflammatory mechanism of silicosis that may bring about novel therapies for this inflammatory and fibrotic disease.  相似文献   

14.

Background

CHI3L1 is a chitinase-like protein without enzymatic activity, produced by activated macrophages, chondrocytes, neutrophils. Recent studies on arthritis, asthma, and inflammatory bowel diseases suggest that chitinases are important in inflammatory processes and tissue remodeling, but their production by human T cells, has never been reported.

Methods

A microarray analysis of gene expression profile was performed on Th17 and classic Th1 cell clones and CHI3L1 was found among the up-regulated genes on Th17 cells. Different types of helper T cell clones (TCCs) were then evaluated by Real Time PCR (RT-PCR) for CHI3L1 mRNA expression; protein expression was investigated in cell lysates by western blotting and in cultures supernatants by ELISA. ELISA was also used to measure CHI3L1 in the serum and in the synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients.

Results

At mRNA level CHI3L1 was highly expressed by Th17, Th17/Th1, non classic Th1 and even in Th17/Th2 cell clones, whereas it was virtually absent in CD161? classic Th1 and Th2 TCCs. CHI3L1 was also detected in cell culture supernatants of Th17 and Th17-derived cells but not of classic Th1. Moreover CHI3L1 was higher in the SF than in serum of JIA patients, and it positively correlated with the frequency of Th17 and non-classic Th1 cells in SF. CHI3L1 in SF also positively correlated with the C reactive protein (CRP) serum levels, and with the levels of some proinflammatory cytokines, such as IL-6 and p40, which is the common subunit of IL12 and IL23.

Conclusions

Here we describe for the first time CHI3L1 production by T cells owing the Th17 family. Moreover the positive correlation found between the frequency of Th17 and Th17-derived cell subsets and CHI3L1 levels in SF of JIA patients, in agreement with the suggested role of these cells in inflammatory process, candidates CHI3L1 as a possible biological target in JIA treatment.
  相似文献   

15.
During mycobacterial infection, macroautophagy/autophagy, a process modulated by cytokines, is essential for mounting successful host responses. Autophagy collaborates with human immune responses against Mycobacterium tuberculosis (Mt) in association with specific IFNG secreted against the pathogen. However, IFNG alone is not sufficient to the complete bacterial eradication, and other cytokines might be required. Actually, induction of Th1 and Th17 immune responses are required for protection against Mt. Accordingly, we showed that IL17A and IFNG expression in lymphocytes from tuberculosis patients correlates with disease severity. Here we investigate the role of IFNG and IL17A during autophagy in monocytes infected with Mt H37Rv or the mutant MtΔRD1. Patients with active disease were classified as high responder (HR) or low responder (LR) according to their T cell responses against Mt. IL17A augmented autophagy in infected monocytes from HR patients through a mechanism that activated MAPK1/ERK2-MAPK3/ERK1 but, during infection of monocytes from LR patients, IL17A had no effect on the autophagic response. In contrast, addition of IFNG to infected monocytes, increased autophagy by activating MAPK14/p38 α both in HR and LR patients. Interestingly, proteins codified in the RD1 region did not interfere with IFNG and IL17A autophagy induction. Therefore, in severe tuberculosis patients' monocytes, IL17A was unable to augment autophagy because of a defect in the MAPK1/3 signaling pathway. In contrast, both IFNG and IL17A increased autophagy levels in patients with strong immunity to Mt, promoting mycobacterial killing. Our findings might contribute to recognize new targets for the development of novel therapeutic tools to fight the pathogen.  相似文献   

16.
摘要 目的:探讨外周血辅助T细胞(Th)1/Th2比值、白介素(IL)-23/Th17轴与中重度斑块状银屑病(PP)患者颈动脉粥样硬化和临床疗效的关系。方法:选取2021年1月~2022年1月徐州医科大学附属医院收治的97例中重度PP患者为中重度PP组,根据颈动脉内中膜厚度(CIMT)分为增厚组39例和正常组58例,根据甲氨蝶呤(MTX)治疗是否应答有效分为无应答组和应答组,另选取同期50例体检健康志愿者为对照组。采用流式细胞术检测外周血Th1、Th2百分比和Th1/Th2比值,酶联免疫吸附法检测外周血IL-23、IL-17A水平。采用Pearson相关性分析中重度PP患者外周血Th1、Th2、Th1/Th2比值和IL-23/Th17轴相关因子与CIMT的相关性,多因素Logistic回归分析中重度PP患者MTX治疗无应答的影响因素。结果:与对照组比较,中重度PP组外周血Th1、Th1/Th2比值、IL-23和IL-17A水平升高,Th2比例降低(P均<0.001)。97例中重度PP患者颈动脉粥样硬化发生率为40.21%(39/97)。与正常组比较,增厚组外周血Th1、Th1/Th2比值、IL-23和IL-17A水平升高,Th2比例降低(P均<0.001)。Pearson相关性分析显示,中重度PP患者外周血Th1、Th1/Th2比值、IL-23、IL-17A与CIMT呈正相关,Th2与CIMT呈负相关(r=0.695、0.706、0.688、0.650、-0.639,P均<0.001)。97例中重度PP患者MTX治疗无应答率为21.65%(21/97)。多因素Logistic回归分析显示,重度PP和Th1、Th1/Th2比值、IL-23、IL-17A升高为中重度PP患者MTX治疗无应答的独立危险因素,Th2升高为独立保护因素(P均<0.05)。结论:中重度PP患者外周血Th1/Th2比值和IL-23/Th17轴相关因子升高,与颈动脉粥样硬化和MTX治疗无应答有关,可能成为中重度PP患者颈动脉粥样硬化和临床疗效评估指标。  相似文献   

17.
The role of exosomes derived from endothelial cells (ECs) in the progression of atherosclerosis (AS) and inflammation remains largely unexplored. We aimed to investigate whether exosome derived from CD137‐modified ECs (CD137‐Exo) played a major role in AS and to elucidate the potential mechanism underlying the inflammatory effect. Exosomes derived from mouse brain microvascular ECs treated with agonist anti‐CD137 antibody were used to explore the effect of CD137 signalling in AS and inflammation in vitro and vivo. CD137‐Exo efficiently induced the progression of AS in ApoE?/? mice. CD137‐Exo increased the proportion of Th17 cells both in vitro and vivo. The IL‐6 contained in CD137‐Exo which is regulated by Akt and NF‐КB pathway was verified to activate Th17 cell differentiation. IL‐17 increased apoptosis, inhibited cell viability and improved lactate dehydrogenase (LDH) release in ECs subjected to inflammation induced by lipopolysaccharide (LPS). The expression of soluble intercellular adhesion molecule1 (sICAM‐1), monocyte chemoattractant protein‐1 (MCP‐1) and E‐selectin in the supernatants of ECs after IL‐17 treatment was dramatically increased. CD137‐Exo promoted the progression of AS and Th17 cell differentiation via NF‐КB pathway mediated IL‐6 expression. This finding provided a potential method to prevent local and peripheral inflammation in AS.  相似文献   

18.
CD4+T cells and their related cytokines play an important role in the pathogenesis of psoriasis, a chronic, recurrent, inflammatory skin disease. The role of IL‐35, an immunosuppressive cytokine involved in many autoimmune diseases, in the pathogenesis of psoriasis is unclear. In this study IL‐35 expression and its clinical significance in patients with psoriasis were evaluated. Protein and mRNA levels of specified markers were measured by ELISA and qRT‐PCR, respectively. It was found that plasma IL‐35 concentrations were lower in patients with psoriasis than in healthy individuals (Z = ?6.525, P < 0.0001). mRNA titers of Ebi3 and p35 were lower in peripheral blood mononuclear cells from patients with psoriasis than in those from healthy individuals (Z = ?5.078, P < 0.0001; Z = ?2.609, P = 0.009, respectively). The areas under the receiver‐operating characteristic (ROC) curves for IL‐35, Ebi3 and p35 in patients with psoriasis versus controls were 0.86, 0.78 and 0.64, respectively. Pearson correlation analysis showed that, in patients with psoriasis, plasma IL‐35 expression correlated negatively with concentrations of INF‐γ, tumor necrosis factor‐alpha, IL‐23, ?17, and ?22, and the Psoriasis Activity and Severity Index and positively with concentrations of transforming growth factor beta and IL‐10 . In summary, IL‐35 may mediate pathogenesis of psoriasis by influencing expression of Th1/Th17/Treg‐related cytokines and may therefore be a putative target for monitoring or treating psoriasis.
  相似文献   

19.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号