首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.  相似文献   

2.
Due to their high efficiency, specificity, and flexibility, programmable nucleases, such as those of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (Cpf1) system, have greatly expanded the applicability of editing the genomes of various organisms. Genes from different gene families or genes with redundant functions in the same gene family can be examined by assembling multiple CRISPR RNAs (crRNAs) in a single vector. However, the activity and efficiency of CRISPR/Cas12a in the non‐vascular plant Physcomitrella patens are largely unknown. Here, we demonstrate that LbCas12a together with its mature crRNA can target multiple loci simultaneously in P. patens with high efficiency via co‐delivery of LbCas12a and a crRNA expression cassette in vivo. The mutation frequencies induced by CRISPR/LbCas12a at a single locus ranged from 26.5 to 100%, with diverse deletions being the most common type of mutation. Our method expands the repertoire of genome editing tools available for P. patens and facilitates the creation of loss‐of‐function mutants of multiple genes from different gene families.  相似文献   

3.
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM.  相似文献   

4.
在CRISPR/Cas9系统介导的基因编辑中,借助于双链DNA (double-stranded DNA,dsDNA)供体模板的重组效应能够实现对目标基因组靶位点的精确编辑和基因敲入,然而高等真核生物细胞中同源重组的低效性限制了该基因编辑策略的发展和应用。为提高CRISPR/Cas9系统介导dsDNA供体模板的同源重组效率,本研究利用大肠杆菌(Escherichia coli)乳糖操纵子阻遏蛋白LacI与操纵序列LacO特异性结合的特点,通过重组DNA技术将密码子人源化优化的阻遏蛋白基因LacI分别与脓链球菌(Streptococcus pyogenes)源的SpCas9和路邓葡萄球菌(Staphylococcus lugdunensis)源的SlugCas9-HF融合表达,通过PCR将操纵序列LacO与dsDNA供体嵌合,构建了新型的CRISPR/Cas9-hLacI供体适配系统(donor adapting system,DAS)。首先在报告载体水平上对Cas9核酸酶活性、DAS介导的同源引导修复(homology-directed repair,HDR)效率进行了验证和优化,其次在基因组水平对其介导的基因精确编辑进行了检测,并最终利用CRISPR/SlugCas9-hLacI DAS在HEK293T细胞中实现了VEGFA位点的精确编辑,效率高达30.5%,显著高于野生型。综上所述,本研究开发了新型的CRISPR/Cas9-hLacI供体适配基因编辑系统,丰富了CRISPR/Cas9基因编辑技术种类,为以后的基因编辑及分子设计育种研究提供了新的工具。  相似文献   

5.
CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease‐based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium‐delivered CRISPR/Cas9 for high‐frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4‐reductase or anthocyaninless genes (a1 and a4). T0 transgenic events carrying mono‐ or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi‐II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target‐specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize.  相似文献   

6.
7.
Knockout of genes with CRISPR/Cas9 is a newly emerged approach to investigate functions of genes in various organisms. We demonstrate that CRISPR/Cas9 can mutate endogenous genes of the ascidian Ciona intestinalis, a splendid model for elucidating molecular mechanisms for constructing the chordate body plan. Short guide RNA (sgRNA) and Cas9 mRNA, when they are expressed in Ciona embryos by means of microinjection or electroporation of their expression vectors, introduced mutations in the target genes. The specificity of target choice by sgRNA is relatively high compared to the reports from some other organisms, and a single nucleotide mutation at the sgRNA dramatically reduced mutation efficiency at the on‐target site. CRISPR/Cas9‐mediated mutagenesis will be a powerful method to study gene functions in Ciona along with another genome editing approach using TALE nucleases.  相似文献   

8.
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off‐target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR‐induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5‐fold in somatic tissues and up to 100‐fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double‐stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on‐target mutagenesis in plants using CRISPR/Cas9.  相似文献   

9.
The base‐editing technique using CRISPR/nCas9 (Cas9 nickase) or dCas9 (deactivated Cas9) fused with cytidine deaminase is a powerful tool to create point mutations. In this study, a novel G. hirsutum‐Base Editor 3 (GhBE3) base‐editing system has been developed to create single‐base mutations in the allotetraploid genome of cotton (Gossypium hirsutum). A cytidine deaminase sequence (APOBEC) fused with nCas9 and uracil glycosylase inhibitor (UGI) was inserted into our CRISPR/Cas9 plasmid (pRGEB32‐GhU6.7). Three target sites were chosen for two target genes, GhCLA and GhPEBP, to test the efficiency and accuracy of GhBE3. The editing efficiency ranged from 26.67 to 57.78% at the three target sites. Targeted deep sequencing revealed that the C→T substitution efficiency within an ‘editing window’, approximately six‐nucleotide windows of ?17 to ?12 bp from the PAM sequence, was up to 18.63% of the total sequences. The 27 most likely off‐target sites predicted by CRISPR‐P and Cas‐OFFinder tools were analysed by targeted deep sequencing, and it was found that rare C→T substitutions (average < 0.1%) were detected in the editing windows of these sites. Furthermore, whole‐genome sequencing analyses on two GhCLA‐edited and one wild‐type plants with about 100× depth showed that no bona fide off‐target mutations were detectable from 1500 predicted potential off‐target sites across the genome. In addition, the edited bases were inherited to T1 progeny. These results demonstrate that GhBE3 has high specificity and accuracy for the generation of targeted point mutations in allotetraploid cotton.  相似文献   

10.
刘星晨  谷守芹  董金皋 《微生物学报》2017,57(11):1634-1642
CRISPR/Cas9技术是在特定的RNA引导下,利用特异的核酸酶实现对基因组进行编辑的新技术。自2013年该技术体系建立起来已成功应用于动物、植物及真菌中。本文简述了3种基于核酸酶的基因编辑技术及其应用,概述了CRISPR/Cas9系统的组成及其作用机理,总结了CRISPR/Cas9在模式真菌酿酒酵母及丝状真菌中的应用,并就在丝状真菌中应用该技术时sg RNA表达盒的设计、Cas9表达盒的优化、抗性标记的筛选、受体的选择等方面提出具体的研究方法。另外,针对该技术应用过程中出现的脱靶效应、Cas9核定位信号的添加、启动子的选择及多个靶基因的编辑等问题提出了建议与展望,希望能够为初次涉足该领域的科研人员提供理论参考和技术支持。  相似文献   

11.
CRISPR/Cas9 has been widely used for genome editing in many organisms, including important crops like wheat. Despite the tractability in designing CRISPR/Cas9, efficacy in the application of this powerful genome editing tool also depends on DNA delivery methods. In wheat, the biolistics based transformation is the most used method for delivery of the CRISPR/Cas9 complex. Due to the high frequency of gene silencing associated with co‐transferred plasmid backbone and low edit rate in wheat, a large T0 transgenic plant population are required for recovery of desired mutations, which poses a bottleneck for many genome editing projects. Here, we report an Agrobacterium‐delivered CRISPR/Cas9 system in wheat, which includes a wheat codon optimized Cas9 driven by a maize ubiquitin gene promoter and a guide RNA cassette driven by wheat U6 promoters in a single binary vector. Using this CRISPR/Cas9 system, we have developed 68 edit mutants for four grain‐regulatory genes, TaCKX2‐1, TaGLW7, TaGW2, and TaGW8, in T0, T1, and T2 generation plants at an average edit rate of 10% without detecting off‐target mutations in the most Cas9‐active plants. Homozygous mutations can be recovered from a large population in a single generation. Different from most plant species, deletions over 10 bp are the dominant mutation types in wheat. Plants homozygous of 1160‐bp deletion in TaCKX2‐D1 significantly increased grain number per spikelet. In conclusion, our Agrobacterium‐delivered CRISPR/Cas9 system provides an alternative option for wheat genome editing, which requires a small number of transformation events because CRISPR/Cas9 remains active for novel mutations through generations.  相似文献   

12.
Recent reports of CRISPR/Cas9 genome editing in parasitic helminths open up new avenues for research on these dangerous pathogens. However, the complex morphology and life cycles inherent to these parasites present obstacles for the efficient application of CRISPR/Cas9‐targeted mutagenesis. This is especially true with the trematode flukes where only modest levels of gene mutation efficiency have been achieved. Current major challenges in the application of CRISPR/Cas9 for study of parasitic worms thus lie in enhancing gene mutation efficiency and overcoming issues involved in host passage so that mutated parasites survive. Strategies developed for CRISPR/Cas9 studies on Caenorhabditis elegans, protozoa and mammalian cells, including novel delivery methods, the choice of selectable markers, and refining mutation precision represent novel tactics whereby these impediments can be overcome. Furthermore, employing CRISPR/Cas9‐mediated gene drive to interfere with vector transmission represents a novel approach for the control of parasitic worms that is worthy of further exploration.  相似文献   

13.
CRISPR utilizing Cas9 from Streptococcus pyogenes (SpCas9) and CRISPR interference (CRISPRi) employing catalytically inactive SpCas9 (SpdCas9) have gained popularity for Escherichia coli engineering. To integrate the SpdCas9-based CRISPRi module using CRISPR while avoiding mutual interference between SpCas9/SpdCas9 and their cognate single-guide RNA (sgRNA), this study aimed at exploring an alternative Cas nuclease orthogonal to SpCas9. We compared several Cas9 variants from different microorganisms such as Staphylococcus aureus (SaCas9) and Streptococcus thermophilius CRISPR1 (St1Cas9) as well as Cas12a derived from Francisella novicida (FnCas12a). At the commonly used E. coli model genes  LacZ, we found that SaCas9 and St1Cas9 induced DNA cleavage more effectively than FnCas12a. Both St1Cas9 and SaCas9 were orthogonal to SpCas9 and the induced DNA cleavage promoted the integration of heterologous DNA of up to 10 kb, at which size St1Cas9 was superior to SaCas9 in recombination frequency/accuracy. We harnessed the St1Cas9 system to integrate SpdCas9 and sgRNA arrays for constitutive knockdown of three genes, knock-in pyc and knockout adhE, without compromising the CRISPRi knockdown efficiency. The combination of orthogonal CRISPR/CRISPRi for metabolic engineering enhanced succinate production while inhibiting byproduct formation and may pave a new avenue to E. coli engineering.  相似文献   

14.
The CRISPR/Cas9 genome editing technology has previously been shown to be a highly efficient tool for generating gene disruptions in CHO cells. In this study we further demonstrate the applicability and efficiency of CRISPR/Cas9 genome editing by disrupting FUT8, BAK and BAX simultaneously in a multiplexing setup in CHO cells. To isolate Cas9‐expressing cells from transfected cell pools, GFP was linked to the Cas9 nuclease via a 2A peptide. With this method, the average indel frequencies generated at the three genomic loci were increased from 11% before enrichment to 68% after enrichment. Despite the high number of genome editing events in the enriched cell pools, no significant off‐target effects were observed from off‐target prediction followed by deep sequencing. Single cell sorting of enriched multiplexed cells and deep sequencing of 97 clones revealed the presence of four single, 23 double and 34 triple gene‐disrupted cell lines. Further characterization of selected potential triple knockout clones confirmed the removal of Bak and Bax protein and disrupted fucosylation activity as expected. The knockout cell lines showed improved resistance to apoptosis compared to wild‐type CHO‐S cells. Taken together, multiplexing with CRISPR/Cas9 can accelerate genome engineering efforts in CHO cells even further.  相似文献   

15.
Gossypium hirsutum is an allotetraploid with a complex genome. Most genes have multiple copies that belong to At and Dt subgenomes. Sequence similarity is also very high between gene homologues. To efficiently achieve site/gene‐specific mutation is quite needed. Due to its high efficiency and robustness, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system has exerted broad site‐specific genome editing from prokaryotes to eukaryotes. In this study, we utilized a CRISPR/Cas9 system to generate two sgRNAs in a single vector to conduct multiple sites genome editing in allotetraploid cotton. An exogenously transformed gene Discosoma red fluorescent protein2(DsRed2) and an endogenous gene GhCLA1 were chosen as targets. The DsRed2‐edited plants in T0 generation reverted its traits to wild type, with vanished red fluorescence the whole plants. Besides, the mutated phenotype and genotype were inherited to their T1 progenies. For the endogenous gene GhCLA1, 75% of regenerated plants exhibited albino phenotype with obvious nucleotides and DNA fragments deletion. The efficiency of gene editing at each target site is 66.7–100%. The mutation genotype was checked for both genes with Sanger sequencing. Barcode‐based high‐throughput sequencing, which could be highly efficient for genotyping to a population of mutants, was conducted in GhCLA1‐edited T0 plants and it matched well with Sanger sequencing results. No off‐target editing was detected at the potential off‐target sites. These results prove that the CRISPR/Cas9 system is highly efficient and reliable for allotetraploid cotton genome editing.  相似文献   

16.
Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired‐sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired‐sgRNA cloning, our strategy only requires the synthesis of two gRNA‐containing primers which largely reduces the cost. We further compared efficiencies of paired‐sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA‐sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10‐fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired‐sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418‐resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants.  相似文献   

17.
The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR‐Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR‐Cas9 as a mutant screening tool. Here, we report a pooled CRISPR‐Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR‐Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1‐1/1‐2/1‐3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.  相似文献   

18.
Solventogenic clostridia are important industrial microorganisms that produce various chemicals and fuels. Effective genetic tools would facilitate physiological studies aimed both at improving our understanding of metabolism and optimizing solvent productivity through metabolic engineering. Here we have developed an all‐in‐one, CRISPR‐based genome editing plasmid, pNICKclos, that can be used to achieve successive rounds of gene editing in Clostridium acetobutylicum ATCC 824 and Clostridium beijerinckii NCIMB 8052 with efficiencies varying from 6.7% to 100% and 18.8% to 100%, respectively. The plasmid specifies the requisite target‐specific guide RNA, the gene encoding the Streptococcus pyogenes Cas9 nickase and the genome editing template encompassing the gene‐specific homology arms. It can be used to create single target mutants within three days, with a further two days required for the curing of the pNICKclos plasmid ready for a second round of mutagenesis. A S. pyogenes dCas9‐mediated gene regulation control system, pdCASclos, was also developed and used in a CRISPRi strategy to successfully repress the expression of spo0A in C. acetobutylicum and C. beijerinckii. The combined application of the established high efficiency CRISPR‐Cas9 based genome editing and regulation control systems will greatly accelerate future progress in the understanding and manipulation of metabolism in solventogenic clostridia.  相似文献   

19.
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium‐mediated transformation to 5–6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9‐mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9‐mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.  相似文献   

20.
Recently, CRISPR‐Cas12a (Cpf1) from Prevotella and Francisella was engineered to modify plant genomes. In this report, we employed CRISPR‐LbCas12a (LbCpf1), which is derived from Lachnospiraceae bacterium ND2006, to edit a citrus genome for the first time. First, LbCas12a was used to modify the CsPDS gene successfully in Duncan grapefruit via Xcc‐facilitated agroinfiltration. Next, LbCas12a driven by either the 35S or Yao promoter was used to edit the PthA4 effector binding elements in the promoter (EBEPthA4‐CsLOBP) of CsLOB1. A single crRNA was selected to target a conserved region of both Type I and Type II CsLOBPs, since the protospacer adjacent motif of LbCas12a (TTTV) allows crRNA to act on the conserved region of these two types of CsLOBP. CsLOB1 is the canker susceptibility gene, and it is induced by the corresponding pathogenicity factor PthA4 in Xanthomonas citri by binding to EBEPthA4‐CsLOBP. A total of seven 35S‐LbCas12a‐transformed Duncan plants were generated, and they were designated as #D35s1 to #D35s7, and ten Yao‐LbCas12a‐transformed Duncan plants were created and designated as #Dyao1 to #Dyao10. LbCas12a‐directed EBEPthA4‐CsLOBP modifications were observed in three 35S‐LbCas12a‐transformed Duncan plants (#D35s1, #D35s4 and #D35s7). However, no LbCas12a‐mediated indels were observed in the Yao‐LbCas12a‐transformed plants. Notably, transgenic line #D35s4, which contains the highest mutation rate, alleviates XccΔpthA4:dCsLOB1.4 infection. Finally, no potential off‐targets were observed. Therefore, CRISPR‐LbCas12a can readily be used as a powerful tool for citrus genome editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号