首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the spectral distribution of illumination onthe gibberellin, cytokinin, auxin, and abscisic acid levelsand the correlation with the degree of branching in Xanthiumstrumarium is presented and discussed. Gibberellins do not appearto play a major role in apical dominance but may be importantfor bud extension following the initial release from dominance.The cytokinin level was much higher in inhibited buds than inreleased buds. It is suggested that the cytokinins present wereprobably not able to participate in bud growth because of anauxin-induced accumulation of abscisic acid in the buds themselves.The concentration of abscisic acid as measured by bioassay andgas-liquid chromatography was between 50 and 250 times thatoccurring in all other plants parts examined. This level felldramatically following release from apical dominance by decapitation.The results are discussed in relation to current hypothesesof apical dominance.  相似文献   

2.
The hormonal regulation of axillary bud growth in Arabidopsis   总被引:11,自引:0,他引:11  
Apically derived auxin has long been known to inhibit lateral bud growth, but since it appears not to enter the bud, it has been proposed that its inhibitory effect is mediated by a second messenger. Candidates include the plant hormones ethylene, cytokinin and abscisic acid. We have developed a new assay to study this phenomenon using the model plant Arabidopsis. The assay allows study of the effects of both apical and basal hormone applications on the growth of buds on excised nodal sections. We have shown that apical auxin can inhibit the growth of small buds, but larger buds were found to have lost competence to respond. We have used the assay with nodes from wild-type and hormone-signalling mutants to test the role of ethylene, cytokinin and abscisic acid in bud inhibition by apical auxin. Our data eliminate ethylene as a second messenger for auxin-mediated bud inhibition. Similarly, abscisic acid signalling is not to be required for auxin action, although basally applied abscisic can enhance inhibition by apical auxin and apically applied abscisic acid can reduce it. By contrast, basally applied cytokinin was found to release lateral buds from inhibition by apical auxin, while apically applied cytokinin dramatically increased the duration of inhibition. These results are consistent with cytokinin acting independently to regulate bud growth, rather than as a second messenger for auxin. However, in the absence of cytokinin-signalling mutants, a role for cytokinin as a second messenger for auxin cannot be ruled out.  相似文献   

3.
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)‐mediated repression of bud–meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up‐regulation of VvA8H‐CYP707A4, which encodes ABA 8′‐hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H‐CYP707A4 within grape buds, (b) the VvA8H‐CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H‐CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H‐CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H‐CYP707A4 level in the bud is up‐regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA‐mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.  相似文献   

4.
Experiments with five caespitose grass species from temperateand tropical environments showed that the number of lateralshoots (tillers) which emerged following defoliation was notincreased by leaving a greater residual leaf area. Increasedavailability of photosynthate (and perhaps other resources)was effective, however, in increasing the rate of growth anddegree of flowering of new lateral shoots in one tropical species,Panicum maximum. In two temperate Agropyron tussock grasses, decapitation (apicalbud removal) did not stimulate lateral shoot growth. This indicatedthat apical dominance was not a factor preventing growth oflateral buds just prior to inflorescence emergence on the parenttillers. However, defoliation, where both terminal buds andfoliage were removed from the parent tillers stimulated lateralbud growth. Hormones other than those produced by the apicalbud or light quality or intensity may control lateral bud growthin these species. In contrast to the temperate species, lateralbud growth was stimulated by both decapitation and defoliationin the three tropical species. This response is consistent withthe model of correlative inhibition by apical dominance. Agropyron desertorum, Agropyron spicatum, Heteropogon contortus, Panicum maximum, Themeda triandra, crested wheatgrass, bluebunch wheatgrass, black speargrass, green panic grass kangaroo grass, apical dominance, tillering, regrowth, grazing, tussock grasses  相似文献   

5.
Early changes in the concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) were investigated in the larger axillary bud of 2-week-old Phaseolus vulgaris L. cv Tender Green seedlings after removal of the dominant apical bud. Concentrations of these two hormones were measured at 4, 6, 8, 12 and 24 hours following decapitation of the apical bud and its subtending shoot. Quantitations were accomplished using either gas chromatography-mass spectrometry-selected ion monitoring (GS-MS-SIM) with [13C6]-IAA or [2H6]-ABA as quantitative internal standards, or by an indirect enzyme-linked immunosorbent assay, validated by GC-MS-SIM. Within 4 hours after decapitation the IAA concentration in the axillary bud had increased fivefold, remaining relatively constant thereafter. The concentration of ABA in axillary buds of decapitated plants was 30 to 70% lower than for buds of intact plants from 4 to 24 hours following decapitation. Fresh weight of buds on decapitated plants had increased by 8 hours after decapitation and this increase was even more prominent by 24 hours. Anatomical assessment of the larger axillary buds at 0, 8, and 24 hours following decapitation showed that most of the growth was due to cell expansion, especially in the intermodal region. Thus, IAA concentration in the axillary bud increases appreciably within a very few hours of decapitation. Coincidental with the rise in IAA concentration is a modest, but significant reduction in ABA concentration in these axillary buds after decapitation.  相似文献   

6.
Under the tropical conditions of East Java, terminal buds of apple burst at any time of the year in response to removal of the subtending leaves. Following two such defoliations, two weeks apart on separate trees, there was a decrease in abscisic acid (ABA), a three-fold increase in gibberellin-like substances (GAs) and only a slight increase in cytokinin-like substances (CKs) in the apex tissue of closed buds. These changes preceded bud opening and the associated increases in fresh and dry weight, and may be causally related to bud burst. In open buds (i.e. young expanding leaves) the concentration of CKs was greater, and the concentrations of ABA and GAs less, than the concentrations in closed buds. As the leaves expanded, ABA increased and GAs and CKs decreased in concentration. The decrease in concentration of GAs and CKs, however, was due to the rise in dry weight of the expanding tissue; the amounts of all three hormones (per apex) increased. During bud burst there was a concurrent decrease in the CKs of subtending stems, suggesting a transfer into the expanding bud tissues. Removal of the old leaves by defoliation may remove the source of ABA and allow the amount of GAs in the apex to rise, bud burst following. Stem CKs may be utilized in the expansion of the new leaves in the bursting buds.  相似文献   

7.
The effect of N -phenyl- N '-1,2,3,-thidiazol-5-ylurea (thidiazuron, Dropp, SN 49537) on abscisic acid (ABA) level in apple ( Malus domestica Borkh. cv. York Imperial) buds associated with bud break and bud development was determined. The data showed that increased ABA content in apple buds was associated with thidiazuron-induced bud break and bud development. ABA stimulated growth of apple buds that had emerged from dormancy by thidiazuron treatment. The ABA in apple buds was confirmed by GC-EIMS and GC-CIMS.  相似文献   

8.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

9.
Hormones play an important role in regulating the growth of rice tiller buds. However, little is known about the hormonal changes that occur during tiller bud growth and the mechanism of hormonal regulation of tiller bud growth. Here, two rice cultivars, Yangdao 6 (Indica) and Nanjing 44 (Japonica), were used to investigate the changes in plant hormones during tiller bud growth and the mechanism that underlies the hormonal regulation of tiller bud growth. In the present study, panicles were removed after heading to stimulate the growth of dormant tiller buds located at the elongated upper internodes. At the same time, external abscisic acid (ABA), gibberellic acid (GA3) and α-naphthalene acetic acid (NAA) were applied. The results demonstrated that auxin and cytokinin (CTK) play important and different roles in the regulation of tiller bud growth. Auxin in the nodes inhibits tiller bud growth, while CTK is transferred to the tiller buds to promote growth. The inhibitory effects of GA3 and NAA on tiller bud growth are mainly due to the control of the indole-3-acetic acid (IAA) or CTK contents in plants. As opposed to auxin and CTK, the ABA contents in nodes and tiller buds remained unchanged before tiller bud growth after panicle removal. Meanwhile, external ABA application only slightly slowed the growth of the tiller buds, suggesting that ABA may not be a key regulator of tiller bud growth. These results indicate that auxin, CTK and ABA together likely play roles in the regulation of tiller bud growth.  相似文献   

10.
Flower-bud blasting in Iris occurs in the winter when low light intensities and short days prevail. After introduction of 14CO2 to one leaf the transport of assimilates was studied under controlled culture conditions in a control light treatment and in a treatment of 7 days darkness followed by standard light conditions. Little assimilate transport was found in the direction of the bud in dark-treated plants. However, zeatin injection into the flower buds of the plants subjected to the dark treatment clearly promoted assimilate transport ot these buds. Abscisic acid levels, determined by gas chromatography, were found to increase in the buds of dark-treated plants. Zeatin injection into the flower bud resulted in a suppression of the abscisic acid level. The latter treatment also resulted in higher percentage of flowering. Removal of flower parts was found to inhibit peduncle elongation. The peduncle elongation of complete flowers started in a well defined period, and the fresh weight of buds was found to increase mainly in the last part of that period. Assimilate transport under low light intensities in relation to abscisic acid and supposed gibberellin is discussed.  相似文献   

11.
Three semi‐arid savanna grasses in Botswana (Stipagrostis uniplumis, Eragrostis lehmanniana, and Aristida stipitata) were sampled to quantify their belowground bud banks during the dormant season and to estimate their relative allocation to vegetative and sexual reproduction. Bud banks of these African perennial caespitose grasses were also compared with four perennial caespitose grasses of semi‐arid North American grasslands. The three African grasses each maintained approximately two buds per tiller and showed a high percentage (88–99%) of tillers producing seed. Only E. lehmanniana produced new aerial tillers from axillary buds at elevated nodes on the stem as well as from the belowground bud bank. Compared with species of North American grasslands, these African grasses produced fewer belowground buds but showed a much higher percentage of tillers producing seed. These patterns indicate relatively greater belowground meristem limitation, lower allocation to vegetative reproduction (tillering) and higher allocation to seed reproduction in these African grasses, although studies of more species are needed to assess the generality of this pattern. The management of savannas in ways that favour the maintenance of a reserve population of belowground buds may increase the ability of grasses to respond to pulses of resource availability, increase their compensatory growth capacity following grazing or drought, and decrease the invasibility of these plant communities by exotic species, whereas maintaining allocation to sexual reproduction may be important for conserving genetic variation and enhancing their capacity to adapt to environmental change.  相似文献   

12.
Saunders, P. F. and Barros, R. S. 1987. Periodicity of bud bursting in willow ( Salix viminalis ) as affected by growth regulators.
Lateral vegetative buds of willow ( Salix viminalis L.) were only innately dormant for 3–5 weeks in October; during this time their apices were correlatively inhibited by the bud leaflets. Exogenous gibberellins stimulated the opening of cultured buds when the plants were dormant or entering dormancy. As dormancy was being released, however, cultured buds became more responsive to exogenous cytokinins. Thus the demand for gibberellins and cytokinins for bud opening seemed to be sequential rather than simultaneous. Dormant buds cultured in the presence of abscisic acid remained unopened, but they opened after a chilling treatment. Subsequent growth of such buds as measured by dry matter accumulation, was observed only if a cytokinin was added to the medium.  相似文献   

13.
R. S. Barros  S. J. Neill 《Planta》1986,168(4):530-535
Aseptically cultured lateral buds of Salix viminalis L. collected from field-grown trees exhibited a clear periodicity in their ability to respond to exogenous abscisic acid (ABA). Buds were kept unopened by ABA only when the plants were dormant or entering dormancy. Short days alone did not induce bud dormancy in potted plants but ABA treatment following exposure to an 8-h photoperiod prevented bud opening although ABA treatment of buds from long-day plants did not. Naturally dormant buds taken from shoots of field-grown trees and cultured in the presence of ABA opened following a chilling treatment. In no cases were the induction and breaking of dormancy and response to ABA correlated with endogenous ABA levels in the buds.Abbreviations ABA abscisic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography - LD long day - MeABA methyl ABA - PAR photosynthetically active radiation - SD short day  相似文献   

14.
Vegetative axillary bud dormancy and outgrowth is regulated by several hormonal and environmental signals. In perennials, the dormancy induced by hormonal and environmental signals has been categorized as eco-, endo- or para-dormancy. Over the past several decades para-dormancy has primarily been investigated in eudicot annuals. Recently, we initiated a study using the monoculm phyB mutant (phyB-1) and the freely branching near isogenic wild type (WT) sorghum (Sorghum bicolor) to identify molecular mechanisms and signaling pathways regulating dormancy and outgrowth of axillary buds in the grasses. In a paper published in the January 2010 issue of Plant Cell and Environment, we reported the role of branching genes in the inhibition of bud outgrowth by phyB, shade and defoliation signals. Here we present a model that depicts the molecular mechanisms and pathways regulating axillary bud dormancy induced by shade and defoliation signals in the grasses.Key words: axillary bud, dormancy, shade, phytochrome, defoliation, shoot branching, teosinte branched1, MAX2, cell cycle, sorghumThe dormancy and outgrowth of axillary buds is regulated by several plant hormones such as auxin, cytokinins, abscisic acid and strigolactones, and by environmental factors such as light quality, quantity and duration as well as water, temperature and nutrient status.13 Since the fate of an axillary bud is regulated by such diverse hormonal and environmental signals and their interactions, the type of dormancy induced varies. In perennials, three types of bud dormancy have been identified.4,5 Dormancy mediated by factors within the bud is known as endo-dormancy; while dormancy induced by factors within the plant but outside the bud is called paradormancy or correlative inhibition; the best known example being apical dominance. Dormancy induced due to unfavorable environmental conditions is known as eco-dormancy. Although there is an indepth knowledge about para-dormancy in annuals,6 few studies have been conducted on eco-dormancy. Similarly, studies of endo-dormancy have largely been restricted to low-temperature mediated growth-cessation of axillary buds of perennial plants.7,8 To understand the regulation of dormancy and outgrowth of axillary buds in monocots, we initiated a study on the molecular mechanisms inhibiting bud outgrowth by shade and defoliation signals in sorghum. Our results published in the January 2010 issue of Plant, Cell & Environment indicate that different types of dormancy may be induced in axillary buds of annual grasses by various signals and there may be overlapping and independent molecular mechanisms mediating induction of axillary bud dormancy.  相似文献   

15.
Summary On intact, 3-week-old plants of Phaseolus the larger bud in the axils of the primary leaves shows slow, continuous elongation growth. Release from correlative inhibition can be detected within 30 min following decapitation. When 0.1% indoleacetic acid in lanolin is applied to the decapitated stem stump, the lateral bud shows slow growth during the first 7 h, then stops completely for a further 15 h but after 2 days a further gradual increase in length is observed.The movement of 14C-labelled assimilates from the subtending primary leaf into the lateral bud increases following removal of the shoot apex. When indole acetic acid is applied to decapitated plants the ability of the buds to import 14C increases for 5–7 h and then declines to a negligible amount. Little or no radioactivity from tritiated indoleacetic acid is transported into the lateral buds of decapitated plants during the first 48 h following removal of the apex and it appears that rapid metabolism of the compound occurs in the stem tissues.  相似文献   

16.
Axillary and apical buds of in-vitro-propagated cuttings of Cedrus libani are unable to burst at 24 °C, but this inhibition was overcome at 30 °C. Here we have used cedar microcuttings to investigate whether the levels of endogenous hormones vary with bud dormancy and temperature. We analysed the levels of abscisic acid, indole-3-acetic acid, zeatin, isopentenyladenine and their major metabolites using HPLC purification and fractionation of the samples coupled to an ELISA method for hormonal quantitation involving several antibodies elicited against each hormonal family. Abscisic acid levels in microcuttings with dormant buds were higher than those in microcuttings with growing buds. At 24 °C, needles accumulated more abscisic acid than at 30 °C. In addition, when needles were removed, but growth release was achieved at 24 °C. Abscisic acid supplied at 30 °C induced the formation of dormant buds. These results suggest that abscisic acid accumulation in the needles can explain the bud dormancy of cedar microcuttings at 24 °C. Received: 14 November 1997 / Revision received: 16 January 1998 / Accepted: 5 May 1998  相似文献   

17.
The classic Thimann-Skoog or auxin replacement apical dominance test of exogenous auxin repression of lateral bud outgrowth was successfully executed in both seedlings and older trees of white ash, green ash, and red oak under the following conditions: (1) decapitation of a twig apex and auxin replacement were carried out during spring flush, (2) the decapitation was in the previous season's overwintered wood, and (3) the point of decapitation was below the upper large irrepressible lateral buds but above the lower repressible lateral buds. Although it has been suggested that neither auxin, the terminal bud, nor apical dominance have control over the outgrowth of the irrepressible buds during spring flush, there is evidence in the present study that indicates that such control over the repressible buds exists. In seedlings, second-order branching, which resulted from decapitation of elongating current shoots, was also inhibited by exogenous auxin in the three species. Hence, the auxin replacement experiments did work on year-old proleptic buds (of branches of older trees) that would have entered the bud bank and also on current buds of seedlings. Cytokinin treatments were ineffectual in promoting bud growth.  相似文献   

18.
脱落酸在植物花发育过程中的作用   总被引:3,自引:0,他引:3  
植物激素脱落酸(ABA)对植物的生长发育具有多方面的调节作用,比如种子休眠、萌发,营养生长,环境胁迫反应等。大量研究显示,ABA也参与了植物的成花调控。影响植物成花调控的环境因子,包括光周期变化、春化作用、干旱等均会导致植物体内ABA代谢的变化。本文从调控植物开花的4条主要途径与植物体内ABA代谢变化之间的相互关系,花芽分化时期ABA在植物叶芽和花芽中的动态分布以及离体培养条件下ABA对花芽分化的影响等方面总结了ABA与植物花发育这一领域的最新研究进展。对ABA在植物成花诱导和花发育中的作用进行了综合分析。  相似文献   

19.
Although the co-ordination of promotive root-sourced cytokinin (CK) and inhibitory shoot apex-sourced auxin (IAA) is central to all current models on lateral bud dormancy release, control by those hormones alone has appeared inadequate in many studies. Thus it was hypothesized that the IAA : CK model is the central control but that it must be considered within the relevant timeframe leading to lateral bud release and against a backdrop of interactions with other hormone groups. Therefore, IAA and a wide survey of cytokinins (CKs), were examined along with abscisic acid (ABA) and polyamines (PAs) in released buds, tissue surrounding buds and xylem sap at 1 and 4 h after apex removal, when lateral buds of chickpea are known to break dormancy. Three potential lateral bud growth inhibitors, IAA, ABA and cis -zeatin 9-riboside (ZR), declined sharply in the released buds and xylem following decapitation. This is in contrast to potential dormancy breaking CKs like trans -ZR and trans -zeantin 9-riboside 5'phosphate (ZRMP), which represented the strongest correlative changes by increasing 3.5-fold in xylem sap and 22-fold in buds. PAs had not changed significantly in buds or other tissues after 4 h, so they were not directly involved in the breaking of bud dormancy. Results from the xylem and surrounding tissues indicated that bud CK increases resulted from a combination synthesis in the bud and selective loading of CK nucleotides into the xylem from the root.  相似文献   

20.
The concentrations of indole-3-acetic acid (IAA), cytokinins (CK) and abscisic acid (ABA) were measured in buds of different regions (main stem and lateral branches) of Lupinus angustifolius L. (cv. Merrit) and at different stages in the development of branches. In lupin, branching patterns are the result of discrete regions of axillary branches (upper, middle and basal) which elongate at much different rates. Early in development only the main shoot elongates, followed usually by basal branch growth and then rapid upper branch growth. Branches in the middle of the main stem grow only weakly or fail to develop. Levels of IAA were generally high in the apical buds of slowly growing branches and low in buds from strongly growing branches, whereas CK levels showed the opposite relationship. CK:IAA ratio showed a closer relationship with the rate of growth of a particular branch better than the levels of either CK or IAA alone. During early stages of growth ABA concentration did not follow the rate of branch growth. However, later in development, where growth did not closely match the ratio of CK:IAA, ABA level showed a strong negative relationship with growth. A significant decrease in ABA was associated with continued strong growth of the main stem apex following a decline in CK:IAA ratio. Overall, the best relationship between the level of growth factors in apical buds and branching pattern in lupin was the ratio of CK:IAA, implying that high CK:IAA at a given bud would promote growth. ABA level appeared to play a secondary role, as a growth inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号