首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了明确GsSnRK1.1蛋白激酶在野生大豆生长发育中的具体调控机制,该研究利用酵母二元杂交技术发现了蛋白激酶GsSnRK1.1的互作蛋白GsPP2CA和GsPKA,利用原核表达系统对GsSnRK1.1、GsPP2CA和GsPKA进行了表达和纯化用于Pull down和体外磷酸化分析,并在酵母中研究了GsPP2CA和GsPKA对GsSnRK1.1蛋白活性的调控功能。结果表明:(1)GsSnRK1.1与GsPP2CA和GsPKA具有物理互作关系,Phos Tag和pPKDsub特异性磷酸化抗体检测发现,GsSnRK1.1的Thr176磷酸化可以被蛋白磷酸酶GsPP2CA去磷酸化,GsPKA可能会磷酸化GsSnRK1.1的其他潜在磷酸化位点,进而竞争性抑制GsSnRK1.1的Thr176位点的磷酸化水平。(2)将这些基因回补进入酵母ARY330( snf1/ reg1/ sit4)突变株系中,发现共转化GsSnRK1.1和GsPP2CA或GsPKA的转化子可在非葡萄糖碳源和高葡萄糖碳源的选择培养基上正常生长,GsPP2CA、GsPKA可以替代Reg1和Sit4降低GsSnRK1.1过度磷酸化对酵母细胞产生的毒害作用,进而调控GsSnRK1.1对非发酵型碳源的利用。  相似文献   

2.
Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.  相似文献   

3.
Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group‐A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP‐tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1‐interacting proteins by mass‐spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA‐signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1‐interacting proteins in all LC‐MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA‐binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1–PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co‐immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA‐induced stomatal closure and ABA‐inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1–ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase‐PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR‐mediated ABA signalling.  相似文献   

4.
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy‐sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ‐like proteins, plants also encode a hybrid βγ protein that combines the Four‐Cystathionine β‐synthase (CBS)‐domain (FCD) structure in γ subunits with a glycogen‐binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in‐depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast‐containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre‐CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.  相似文献   

5.
Plant orthologs of the yeast sucrose non-fermenting (Snf1) kinase and mammalian AMP-activated protein kinase (AMPK) represent an emerging class of important regulators of metabolic and stress signalling. The catalytic alpha-subunits of plant Snf1-related kinases (SnRKs) interact in the yeast two-hybrid system with different proteins that share conserved domains with the beta- and gamma-subunits of Snf1 and AMPKs. However, due to the lack of a robust technique allowing the detection of protein interactions in plant cells, it is unknown whether these proteins indeed occur in SnRK complexes in vivo. Here we describe a double-labelling technique, using intron-tagged hemagglutinin (HA) and c-Myc epitope sequences, which provides a simple tool for co-immunopurification of interacting proteins expressed in Agrobacterium-transformed Arabidopsis cells. This generally applicable plant protein interaction assay was used to demonstrate that AKINbeta2, a plant ortholog of conserved Snf1/AMPK beta-subunits, forms different complexes with the catalytic alpha-subunits of Arabidopsis SnRK protein kinases AKIN10 and AKIN11 in vivo.  相似文献   

6.
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.  相似文献   

7.
8.
Dissection and manipulation of metabolic signalling pathways   总被引:2,自引:0,他引:2  
The partitioning of resources between different plant organs and compounds is an important determinant of crop quality. We are attempting to change resource partitioning in crop plants by manipulating the cellular mechanisms involved in metabolite sensing and signalling. One of the proteins involved is SnRK1 (sucrose nonfermenting‐1‐related protein kinase 1), so‐called because of its homology and functional similarity with sucrose non‐fermenting 1 (SNF1) of yeast. SnRK1 is a protein kinase that plays a key role in the global control of plant carbon metabolism. Here we review studies on the characterisation of SnRK1 gene families, SnRK1 regulation and function, and the identification of SnRK1‐interacting proteins. We also describe some potential applications of manipulating SnRK1 activity, including controlling sprouting in stored potato tubers, inducing male sterility in barley and increasing sterol levels in oilseeds.  相似文献   

9.
SNF1‐related protein kinases 2 (SnRK2s) regulate the plant responses to abiotic stresses, especially water deficits. They are activated in plants subjected to osmotic stress, and some of them are additionally activated in response to enhanced concentrations of abscisic acid (ABA) in plant cells. The SnRK2s that are activated in response to ABA are key elements of ABA signalling that regulate plant acclimation to environmental stresses and ABA‐dependent development. Much less is known about the SnRK2s that are not activated by ABA, albeit several studies have shown that these kinases are also involved in response to osmotic stress. Here, we show that one of the Arabidopsis thaliana ABA‐non‐activated SnRK2s, SnRK2.10, regulates not only the response to salinity but also the plant sensitivity to dehydration. Several potential SnRK2.10 targets phosphorylated in response to stress were identified by a phosphoproteomic approach, including the dehydrins ERD10 and ERD14. Their phosphorylation by SnRK2.10 was confirmed in vitro. Our data suggest that the phosphorylation of ERD14 within the S‐segment is involved in the regulation of dehydrin subcellular localization in response to stress.  相似文献   

10.
All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.  相似文献   

11.
Several calcium-independent protein kinases were activated by hyperosmotic and saline stresses in Arabidopsis cell suspension. Similar activation profiles were also observed in seedlings exposed to hyperosmotic stress. One of them was identified to AtMPK6 but the others remained to be identified. They were assumed to belong to the SNF1 (sucrose nonfermenting 1)-related protein kinase 2 (SnRK2) family, which constitutes a plant-specific kinase group. The 10 Arabidopsis SnRK2 were expressed both in cells and seedlings, making the whole SnRK2 family a suitable candidate. Using a family-specific antibody raised against the 10 SnRK2, we demonstrated that these non-MAPK protein kinases activated by hyperosmolarity in cell suspension were SnRK2 proteins. Then, the molecular identification of the involved SnRK2 was investigated by transient expression assays. Nine of the 10 SnRK2 were activated by hyperosmolarity induced by mannitol, as well as NaCl, indicating an important role of the SnRK2 family in osmotic signaling. In contrast, none of the SnRK2 were activated by cold treatment, whereas abscisic acid only activated five of the nine SnRK2. The probable involvement of the different Arabidopsis SnRK2 in several abiotic transduction pathways is discussed.  相似文献   

12.
Sucrose nonfermenting-1 (Snf1)-related protein kinase-1 (SnRK1) of plants is a global regulator of carbon metabolism through the modulation of enzyme activity and gene expression. It is structurally and functionally related to the yeast protein kinase, Snf1, and to mammalian AMP-activated protein kinase. Two DNA sequences from Arabidopsis thaliana, previously known only by their data base accession numbers of NM_ 125448.3 (protein ID NP_200863) and NM_114393.3 (protein ID NP_566876) each functionally complemented a Saccharomyces cerevisiae elm1 sak1 tos3 triple mutant. This indicates that the Arabidopsis proteins are able to substitute for one of the missing yeast upstream kinases, which are required for activity of Snf1. Both plant proteins were shown to phosphorylate a peptide with the amino acid sequence of the phosphorylation site in the T-loop of SnRK1 and by inference SnRK1 in Arabidopsis. The proteins encoded by NM_125448.3 and NM_114393.3 have been named AtSnAK1 and AtSnAK2 (Arabidopsis thaliana SnRK1-activating kinase), respectively. We believe this is the first time that upstream activators of SnRK1 have been described in any plant species.  相似文献   

13.
14.
15.
大豆类钙调磷酸酶B亚基GmCBL1互作候选蛋白的筛选   总被引:2,自引:0,他引:2  
Ca2+是非生物胁迫信号转导途径中的重要信号分子,植物类钙调磷酸酶B亚基蛋白(CBL,calcineurin B-like proteins)是一类重要的钙信号受体蛋白,主要通过与其他蛋白的特异结合传递信号,使植物形成对非生物胁迫的响应。本实验室已经获得大豆Gm CBL1基因,功能鉴定显示Gm CBL1增强了转基因拟南芥对非生物胁迫的耐性。为了进一步研究Gm CBL1的作用机理,本研究构建诱饵载体p GBKT7::Gm CBL1,利用酵母双杂交技术筛选大豆Gm CBL1的互作蛋白。通过对筛选获得的106个蛋白基因测序和Blast比对分析,并根据其可能的生理功能对这些候选蛋白归类,整理得到4类蛋白:能量代谢相关蛋白、修饰蛋白、防御蛋白、钙信号转导相关蛋白。筛选得到候选蛋白的功能预测初步表明,大豆Gm CBL1参与多条信号途径,为进一步研究探索大豆CBL介导的抗逆信号转导途径奠定了基础。  相似文献   

16.
Although phosphatidylinositol transfer proteins (PITPs) are known to serve critical functions in regulating a varied array of signal transduction processes in animals and yeast, the discovery of a similar class of proteins in plants occurred only recently. Here, we report the participation of Ssh1p, a soybean PITP-like protein, in the early events of osmosensory signal transduction in plants, a function not attributed previously to animal or yeast PITPs. Exposure of plant tissues to hyperosmotic stress led to the rapid phosphorylation of Ssh1p, a modification that decreased its ability to associate with membranes. An osmotic stress-activated Ssh1p kinase activity was detected in several plant species by presenting recombinant Ssh1p as a substrate in in-gel kinase assays. Elements of a similar osmosensory signaling pathway also were conserved in yeast, an observation that facilitated the identification of soybean protein kinases SPK1 and SPK2 as stress-activated Ssh1p kinases. This study reveals the activation of SPK1 and/or SPK2 and the subsequent phosphorylation of Ssh1p as two early successive events in a hyperosmotic stress-induced signaling cascade in plants. Furthermore, Ssh1p is shown to enhance the activities of a plant phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, an observation that suggests that the ultimate function of Ssh1p in cellular signaling is to alter the plant's capacity to synthesize phosphoinositides during periods of hyperosmotic stress.  相似文献   

17.
Snf1‐related protein kinases 2 (SnRK2s) are major positive regulators of drought stress tolerance. The kinases of this family are activated by hyperosmotic stress, but only some of them are also responsive to abscisic acid (ABA). Moreover, genetic evidence has indicated the ABA‐independence of SnRK2 activation in the fast response to osmotic stress. Although phosphorylation was demonstrated to be crucial for the activation or activity of the kinases of both subgroups, different phosphorylation mechanisms were suggested. Here, using one kinase from each subgroup (SnRK2.6 and SnRK2.10), two phosphorylation sites within the activation loop were identified by mass spectrometry after immunoprecipitation from Arabidopsis cells treated by ABA or osmolarity. By site‐directed mutagenesis, the phosphorylation of only one of the two sites was shown to be necessary for the catalytic activity of the kinase, whereas both sites are necessary for the full activation of the two SnRK2s by hyperosmolarity or ABA. Phosphoprotein staining together with two‐dimensional PAGE followed by immunoblotting indicated distinct phosphorylation mechanisms of the two kinases. While SnRK2.6 seems to be activated through the independent phosphorylation of these two sites, a sequential process occurs in SnRK2.10, where phosphorylation of one serine is required for the phosphorylation of the other. In addition, a subgroup of protein phosphatases 2C which interact and participate in the regulation of SnRK2.6 do not interact with SnRK2.10. Taken together, our data bring evidence for the involvement of distinct phosphorylation mechanisms in the activation of SnRK2.6 and SnRK2.10, which may be conserved between the two subgroups of SnRK2s depending on their ABA‐responsiveness.  相似文献   

18.
19.
Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.  相似文献   

20.
The sucrose non‐fermenting‐1‐related protein kinase 2 (SnRK2) family represents a unique family of plant‐specific protein kinases implicated in cellular signalling in response to osmotic stress. In our studies, we observed that two class 1 SnRK2 kinases, SnRK2.4 and SnRK2.10, are rapidly and transiently activated in Arabidopsis roots after exposure to salt. Under saline conditions, snrk2.4 knockout mutants had a reduced primary root length, while snrk2.10 mutants exhibited a reduction in the number of lateral roots. The reduced lateral root density was found to be a combinatory effect of a decrease in the number of lateral root primordia and an increase in the number of arrested lateral root primordia. The phenotypes were in agreement with the observed expression patterns of genomic yellow fluorescent protein (YFP) fusions of SnRK2.10 and ‐2.4, under control of their native promoter sequences. SnRK2.10 was found to be expressed in the vascular tissue at the base of a developing lateral root, whereas SnRK2.4 was expressed throughout the root, with higher expression in the vascular system. Salt stress triggered a rapid re‐localization of SnRK2.4–YFP from the cytosol to punctate structures in root epidermal cells. Differential centrifugation experiments of isolated Arabidopsis root proteins confirmed recruitment of endogenous SnRK2.4/2.10 to membranes upon exposure to salt, supporting their observed binding affinity for the phospholipid phosphatidic acid. Together, our results reveal a role for SnRK2.4 and ‐2.10 in root growth and architecture in saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号