首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sustained drought and concomitant high temperature may reduce photosynthesis and cause tree mortality. Possible causes of reduced photosynthesis include stomatal closure and biochemical inhibition, but their relative roles are unknown in Amazon trees during strong drought events. We assessed the effects of the recent (2015) strong El Niño drought on leaf‐level photosynthesis of Central Amazon trees via these two mechanisms. Through four seasons of 2015, we measured leaf gas exchange, chlorophyll a fluorescence parameters, chlorophyll concentration, and nutrient content in leaves of 57 upper canopy and understory trees of a lowland terra firme forest on well‐drained infertile oxisol. Photosynthesis decreased 28% in the upper canopy and 17% in understory trees during the extreme dry season of 2015, relative to other 2015 seasons and was also lower than the climatically normal dry season of the following non‐El Niño year. Photosynthesis reduction under extreme drought and high temperature in the 2015 dry season was related only to stomatal closure in both upper canopy and understory trees, and not to chlorophyll a fluorescence parameters, chlorophyll, or leaf nutrient concentration. The distinction is important because stomatal closure is a transient regulatory response that can reverse when water becomes available, whereas the other responses reflect more permanent changes or damage to the photosynthetic apparatus. Photosynthesis decrease due to stomatal closure during the 2015 extreme dry season was followed 2 months later by an increase in photosynthesis as rains returned, indicating a margin of resilience to one‐off extreme climatic events in Amazonian forests.  相似文献   

2.

Aim

Climate oscillations are known to influence the reproductive phenology of birds. Here, we quantify the effects of cyclic climatic variation, specifically El Niño Southern Oscillation (ENSO), on birds that breed opportunistically. We aim to show how inter‐decadal climate fluctuations influence opportunistic breeding. This knowledge is essential for tracking the phenological responses of birds to climate change.

Location

Temperate and arid Australia.

Methods

We assessed variation in egg‐laying (start, peak, conclusion, length) during the three phases of ENSO (El Niño, La Niña and Neutral) for 64 temperate and 15 arid region species using ~80,000 observations. Linear mixed‐effect models and analysis of variance were used to (1) determine if, on average within each region, egg‐laying dates differed significantly among species between Neutral‐El Niño and Neutral‐La Niña phases, and (2) assess how La Niña and El Niño episodes influence egg‐laying in birds which breed early in the year.

Results

During La Niña phases, which are characterized by mild/wet conditions, most bird species in the temperate and arid regions exhibited longer egg‐laying periods relative to Neutral phases. However, there was substantial variation across species. This effect was strongly seasonal; species breeding in spring experienced the greatest increases in egg‐laying periods during La Niña. Further, we found only small differences in peak egg‐laying dates during Neutral and La Niña in the arid region; suggesting that hot temperatures may constrain breeding regardless of rainfall. The effects of El Niño on breeding phenology were not consistent in the temperate and arid regions and may be confounded by highly mobile species opportunistically moving and breeding with localized rainfall during dry periods.

Main conclusions

In both arid and temperate regions, increased rainfall associated with La Niña phases positively influences avian breeding, and likely recruitment. However, dry El Niño phases may not have the dramatic impacts on breeding phenology that are commonly assumed.
  相似文献   

3.
Abstract: Weather and climatic conditions may impact on the timing of breeding in birds. We examined changes in the laying date of the starling Sturnus vulgaris at Lower Hutt, New Zealand in the period 1970–2003 and investigated possible relationships with the El Niño Southern Oscillation (ENSO). Laying dates (expressed both as first and modal dates for the local population) were significantly delayed over the study period, i.e. starlings tended to lay later. The timing of breeding was non‐linearly related to ENSO, with early laying associated with both low and high values of ENSO. We suggest that changes in laying dates varied with food availability, which fluctuated according to climatic events.  相似文献   

4.
Current climate models project changes in both temperature and precipitation patterns across the globe in the coming years. Migratory species, which move to take advantage of seasonal climate patterns, are likely to be affected by these changes, and indeed, a number of studies have shown a relationship between changing climate and the migration timing of various species. However, these studies have almost exclusively focused on the effects of temperature change on species that inhabit temperate zones. Here, we explore the relationship between rainfall and migration timing in a tropical species, Gecarcoidea natalis (Christmas Island red crab). We find that the timing of the annual crab breeding migration is closely related to the amount of rain that falls during a ‘migration window’ period prior to potential egg release dates, which is in turn related to the Southern Oscillation Index, an atmospheric El Niño‐ Southern Oscillation Index. As reproduction in this species is conditional on successful migration, major changes in migration patterns could have detrimental consequences for the survival of the species. This study serves to broaden our understanding of the effects of climate change on migratory species and will hopefully inspire future work on rainfall and tropical migrations.  相似文献   

5.
One of the major uncertainties of 21st century climate change is the potential for shifts to the intensity and frequency of the El Niño Southern Oscillation (ENSO) cycle. Although this phenomenon is known to have dramatic impacts on ecosystems regionally and globally, the biological consequences of climate change‐driven shifts in future ENSO events have been unexplored. Here, we investigate the potential impacts that a persistent El Niño, La Niña, or ‘Neutral' phase may have on species distributions. Using MaxEnt, we model the distribution of climatically suitable habitat for three northeast Australian butterfly subspecies (Doleschallia bisaltide australis, Hypolimnas alimena lamina, and Mycalesis terminus terminus) across the three ENSO phases. We find that the spatial extent and quality of habitat are lowest under conditions that would characterize a persistent El Niño (hot/dry). In contrast, suitable habitat is broadest under the warm/wet conditions associated with La Niña. Statistical analyses of the difference between pair‐wise combinations of suitability maps using Hellinger distance showed that projections for each subspecies and ENSO phase combination were significantly different from other combinations. The resilience of these, and other, butterfly (sub)species to changes in ENSO will be influenced by fluctuations in the strength of these events, availability of refugia, and life‐history characteristics. However, the population dynamics of wet‐ and dry‐season phenotypes of M. t. terminus and physiological limitations to high temperatures suggest that this subspecies, in particular, may have limited resilience should the strength and frequency of El Niño events increase.  相似文献   

6.
Repeat marine heat wave‐induced mass coral bleaching has decimated reefs in Seychelles for 35 years, but how coral‐associated microbial diversity (microalgal endosymbionts of the family Symbiodiniaceae and bacterial communities) potentially underpins broad‐scale bleaching dynamics remains unknown. We assessed microbiome composition during the 2016 heat wave peak at two contrasting reef sites (clear vs. turbid) in Seychelles, for key coral species considered bleaching sensitive (Acropora muricata, Acropora gemmifera) or tolerant (Porites lutea, Coelastrea aspera). For all species and sites, we sampled bleached versus unbleached colonies to examine how microbiomes align with heat stress susceptibility. Over 30% of all corals bleached in 2016, half of which were from Acropora sp. and Pocillopora sp. mass bleaching that largely transitioned to mortality by 2017. Symbiodiniaceae ITS2‐sequencing revealed that the two Acropora sp. and P. lutea generally associated with C3z/C3 and C15 types, respectively, whereas C. aspera exhibited a plastic association with multiple D types and two C3z types. 16S rRNA gene sequencing revealed that bacterial communities were coral host‐specific, largely through differences in the most abundant families, Hahellaceae (comprising Endozoicomonas), Rhodospirillaceae, and Rhodobacteraceae. Both Acropora sp. exhibited lower bacterial diversity, species richness, and community evenness compared to more bleaching‐resistant P. lutea and C. aspera. Different bleaching susceptibility among coral species was thus consistent with distinct microbiome community profiles. These profiles were conserved across bleached and unbleached colonies of all coral species. As this pattern could also reflect a parallel response of the microbiome to environmental changes, the detailed functional associations will need to be determined in future studies. Further understanding such microbiome‐environmental interactions is likely critical to target more effective management within oceanically isolated reefs of Seychelles.  相似文献   

7.
While we often assume tree growth–climate relationships are time‐invariant, impacts of climate phenomena such as the El Niño Southern Oscillation (ENSO) and the North American Monsoon (NAM) may challenge this assumption. To test this assumption, we grouped ring widths (1900‐present) in three southwestern US conifers into La Niña periods (LNP) and other years (OY). The 4 years following each La Niña year are included in LNP, and despite 1–2 year growth declines, compensatory adjustments in tree growth responses result in essentially equal mean growth in LNP and OY, as average growth exceeds OY means 2–4 years after La Niña events. We found this arises because growth responses in the two periods are not interchangeable: Due to differences in growth–climate sensitivities and climatic memory, parameters representing LNP growth fail to predict OY growth and vice versa (decreases in R2 up to 0.63; lowest R2 = 0.06). Temporal relationships between growth and antecedent climate (memory) show warmer springs and longer growing seasons negatively impact growth following dry La Niña winters, but that NAM moisture can rescue trees after these events. Increased importance of monsoonal precipitation during LNP is key, as the largest La Niña‐related precipitation deficits and monsoonal precipitation contributions both occur in the southern part of the region. Decreases in first order autocorrelation during LNP were largest in the heart of the monsoon region, reflecting both the greatest initial growth declines and the largest recovery. Understanding the unique climatic controls on growth in Southwest conifers requires consideration of both the influences and interactions of drought, ENSO, and NAM, each of which is likely to change with continued warming. While plasticity of growth sensitivity and memory has allowed relatively quick recovery in the tree‐ring record, recent widespread mortality events suggest conditions may soon exceed the capacity for adjustment in current populations.  相似文献   

8.
Abstract Turbo torquatus (hereafter Turbo) were abundant and patchily distributed, especially in algal dominated habitats in shallow water (less then 10 metres) on rocky reefs in central New South Wales, Australia. Although the assemblage of algae was similar in barrens with and without crevices, Turbo were most abundant in crevices, suggesting that shelter was important. Experimental removal of the kelp canopy resulted in a great decrease in the number of Turbo. This was despite cleared patches containing more filamentous food algae, further highlighting the importance of shelter. The density of Turbo in kelp forests ranged from six to seven per square metre in times of abundance and less then one per square metre at other times over a 12‐year period. Variation in the resource base (i.e. food algae and kelp cover) was strongly linked to the abundance of Turbo. Abundance of Turbo was lowest when the density of adult kelp was low (less than 14 plants per square metre). The condition of kelp was severely affected during the 1997–1998 and 2002 El Niño events and was compromised 2–4 years after each event. These pulse events and related loss of shelter probably contributed to a decline in abundance of Turbo. This model was further supported when Turbo abundance increased with a subsequent increase in the density of kelp.  相似文献   

9.
Large‐scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large‐scale variability on resident marine top predator populations. We examined the effect of climate variability on the abundance and temporary emigration of a resident bottlenose dolphin (Tursiops aduncus) population off Bunbury, Western Australia (WA). This population has been studied intensively over six consecutive years (2007–2013), yielding a robust dataset that captures seasonal variations in both abundance and movement patterns. In WA, ENSO affects the strength of the Leeuwin Current (LC), the dominant oceanographic feature in the region. The strength and variability of the LC affects marine ecosystems and distribution of top predator prey. We investigated the relationship between dolphin abundance and ENSO, Southern Annular Mode, austral season, rainfall, sea surface salinity and sea surface temperature (SST). Linear models indicated that dolphin abundance was significantly affected by ENSO, and that the magnitude of the effect was dependent upon season. Dolphin abundance was lowest during winter 2009, when dolphins had high temporary emigration rates out of the study area. This coincided with the single El Niño event that occurred throughout the study period. Coupled with this event, there was a negative anomaly in SST and an above average rainfall. These conditions may have affected the distribution of dolphin prey, resulting in the temporary emigration of dolphins out of the study area in search of adequate prey. This study demonstrated the local effects of large‐scale climatic variations on the short‐term response of a resident, coastal delphinid species. With a projected global increase in frequency and intensity of extreme climatic events, resident marine top predators may not only have to contend with increasing coastal anthropogenic activities, but also have to adapt to large‐scale climatic changes.  相似文献   

10.
The northwest coast of Peru (5°S, 80°W) is very sensitive to and impacted by the climate phenomenon El Niño-Southern Oscillation (ENSO). Though mainly desert, this warm, dry region contains an equatorial dry forest. We report the first dendrochronological studies from this region and identify several species that have dendrochronological potential. Short ring-width chronologies of Palo Santo (Bursera graveolens) show a well-developed response to the ENSO signal over the last 50 years and good inter-site correlations. Preliminary isotopic studies in Algarrobo (Prosopis sp.) also show evidence of the 1997–98 El Niño event. ENSO events have a strong effect on the variability in the growth of several species and thereby on the economy of rural communities where the wood is used for housing, cooking, furniture, tools, fodder and medicinal uses. The extensive use of wood in archeological sites also offers the possibility of ultimately developing longer records for some of these species.  相似文献   

11.
Drought‐induced forest mortality is an increasing global problem with wide‐ranging consequences, yet mortality mechanisms remain poorly understood. Depletion of non‐structural carbohydrate (NSC) stores has been implicated as an important mechanism in drought‐induced mortality, but experimental field tests are rare. We used an ecosystem‐scale precipitation manipulation experiment to evaluate leaf and twig NSC dynamics of two co‐occurring conifers that differ in patterns of stomatal regulation of water loss and recent mortality: the relatively desiccation‐avoiding piñon pine (Pinus edulis) and the relatively desiccation‐tolerant one‐seed juniper (Juniperus monosperma). Piñon pine experienced 72% mortality after 13–25 months of experimental drought and juniper experienced 20% mortality after 32–47 months. Juniper maintained three times more NSC in the foliage than twigs, and converted NSC to glucose and fructose under drought, consistent with osmoregulation requirements to maintain higher stomatal conductance during drought than piñon. Despite these species differences, experimental drought caused decreased leaf starch content in dying trees of both species (P < 0.001). Average dry‐season leaf starch content was also a good predictor of drought‐survival time for both species (R2 = 0.93). These results, along with observations of drought‐induced reductions to photosynthesis and growth, support carbon limitation as an important process during mortality of these two conifer species.  相似文献   

12.
The zooplankton of the northern California Current are typically characterized by an abundance of lipid‐rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to 10 tropical El Niño events. Measurable impacts on mesozooplankton of the northern California Current were observed during seven of 10 of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to 2 months) following the initiation of canonical Eastern Pacific (EP) events, but delayed (lag of 2–8 months) following ‘Modoki’ Central Pacific (CP) events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current.  相似文献   

13.
Aim Long‐distance migrations of terrestrial animals, driven by needs such as food, water and escaping predators and harsh climatic conditions, are widely known phenomena. The saiga antelope (Saiga tatarica tatarica) migrates over long distances in the semi‐arid rangelands of Central Asia. Both the saiga’s range and its populations have been severely affected by socio‐political and land use changes over the last century, related to the formation and dissolution of the Soviet Union. We identified ecological drivers of saiga migration, compared four populations in terms of differences in the geographical characteristics of their ranges and the factors affecting habitat selection within the seasonal ranges. Location Kazakhstan and pre‐Caspian Russia. Methods Using 40 years of direct observations, we tested for differences between the four saiga populations’ ranges in terms of precipitation, seasonal productivity and topographical variables using discriminant analyses. We tested hypotheses concerning the drivers of migration to their seasonal ranges and assessed the impact of peak and average values and the predictability of drivers of habitat use within the seasonal ranges using logistic regressions. Results Three of the four populations migrate in a similar way, following a latitudinal gradient driven by seasonal changes in productivity, which is closely related to broad‐scale differences in precipitation. Intermediate productivity and its low interannual variability determine habitat selection within the seasonal ranges of all the populations. Main conclusions Migration of all four populations is driven by productivity and precipitation. The migrations in Kazakhstan are still intact despite major recent disruption to the populations, whereas their status in the pre‐Caspian region is unknown. All four populations are under severe threat from habitat loss, poaching, lack of protection and gaps in ecological knowledge. A better understanding of the drivers of saiga migration at multiple scales is a key step towards addressing these threats.  相似文献   

14.
Question: Is stomatal regulation specific for climate and tree species, and does it reveal species‐specific responses to drought? Is there a link to vegetation dynamics? Location: Dry inner alpine valley, Switzerland Methods: Stomatal aperture (θE) of Pinus sylvestris, Quercus pubescens, Juniperus communis and Picea abies were continuously estimated by the ratio of measured branch sap flow rates to potential transpiration rates (adapted Penman‐Monteith single leaf approach) at 10‐min intervals over four seasons. Results: θE proved to be specific for climate and species and revealed distinctly different drought responses: Pinus stomata close disproportionately more than neighbouring species under dry conditions, but has a higher θE than the other species when weather was relatively wet and cool. Quercus keeps stomata more open under drought stress but has a lower θE under humid conditions. Juniperus was most drought‐tolerant, whereas Picea stomata close almost completely during summer. Conclusions: The distinct microclimatic preferences of the four tree species in terms of θE strongly suggest that climate (change) is altering tree physiological performances and thus species‐specific competitiveness. Picea and Pinus currently live at the physiological limit of their ability to withstand increasing temperature and drought intensities at the sites investigated, whereas Quercus and Juniperus perform distinctly better. This corresponds, at least partially, with regional vegetation dynamics: Pinus has strongly declined, whereas Quercus has significantly increased in abundance in the past 30 years. We conclude that θE provides an indication of a species' ability to cope with current and predicted climate.  相似文献   

15.
16.
To meet the increasing food and biofuel demand, the Midwestern United States has become one of the most intensively human‐disturbed hotspots, characterized by widespread cropland expansion and various management practices. However, the role of human activities in the carbon (C) cycling across managed landscape remains far from certain. In this study, based on state‐ and national census, field experiments, and model simulation, we comprehensively examined long‐term carbon storage change in response to land use and cover change (LUCC) and agricultural management in the Midwest from 1850 to 2015. We also quantified estimation uncertainties related to key parameter values. Model estimation showed LUCC led to a reduction of 1.35 Pg (with a range of 1.3–1.4 Pg) in vegetation C pool of the Midwest, yet agricultural management barely affected vegetation C change. In comparison, LUCC reduced SOC by 4.5 Pg (3.1 to 6.2 Pg), while agricultural management practices increased SOC stock by 0.9 Pg. Moreover, we found 45% of the study area was characterized by continuously decreasing SOC caused by LUCC, and SOC in 13% and 31% of the area was fully and partially recovered, respectively, since 1850. Agricultural management was estimated to increase the area of full recovery and partial recovery by 8.5% and 1.1%. Our results imply that LUCC plays an essential role in regional C balance, and more importantly, sustainable land management can be beneficial for strengthening C sequestration of the agroecosystems in the Midwestern US, which may serve as an important contributor to C sinks in the US.  相似文献   

17.
Evidence regarding the effect of temperature and rainfall on gall‐inducing insects is contradictory: some studies indicate that species richness of gall‐inducing insects increases as environments become hotter and drier, while others suggest that these factors have no effect. The role of plant species richness in determining species richness of gall‐inducing insects is also controversial. These apparent inconsistencies may prove to be due to the influence of soil fertility and the uneven distribution of gall‐inducing insect species among plant taxa. The current study tested hypotheses about determinants of gall‐inducing insect species richness in a way different to previous studies. The number of gall‐inducing insect species, and the proportion of species with completely enclosed galls (more likely to give protection against heat stress and desiccation), were measured in replicate plots at five locations along a 500‐km N‐S transect in the seasonal tropics of the Northern Territory, Australia. There is a strong temperature–rainfall gradient along this transect during the wet season. Plant species lists had already been compiled for each collection plot. All plots were at low elevation in eucalypt savannah growing on infertile soils. There was no evidence to suggest that hot, dry environments in Australia have more gall‐inducing insect species than cooler, wetter environments, or that degree of enclosure of galls is related to protecting insects from heat stress and desiccation. The variable number of gall‐inducing insect species on galled plant species meant that plant species richness did not influence gall species richness. Confirmation is still required that low soil fertility does not mask temperature–rainfall effects and that galls in the study region are occupied predominantly in the wet season, when the temperature–rainfall gradient is most marked.  相似文献   

18.
Abstract Predator assemblages are complex systems in which asynchrony in the dynamics of resources and consumers, and the idiosyncratic perception of environmental conditions by the predators may obscure the detection of expected patterns. We disentangle the specific effects of these variables on the guild structure of a vertebrate predatory assemblage in a semiarid ecosystem of western South America. Over 16 years, this system faced dramatic fluctuations in prey availability associated with four El Niño events. After controlling for other sources of variation, we tested if increased resource availability is associated with higher niche overlaps, as expected from the lean/fat scenario. We determined the existence of two trophic guilds of predators (specialized mammal‐eaters and omnivorous species with emphasis on arthropods) and found that they responded to increased productivity both at the guild and whole assemblage levels. However, the population response of arthropod prey (almost simultaneous) and of different small mammal prey (delayed by 1 or 2 years) to productivity imposed a degree of asynchrony in prey availability and in the response of predators. This resulted in the between‐guilds exchange of predator species depending on mammal prey scarcity or abundance. As a consequence, the observed pattern was an apparent lack of response at the assemblage level. Despite differences in the perception of prey levels by predators, we conclude that each one of them responded accordingly to theoretical predictions following a simple rule: if prey resources are not limiting, predators behave opportunistically converging over the most abundant resources, thus increasing niche overlap; if prey shortages occur, predators specialize on those prey resources that they gather most efficiently, thus lowering niche overlap; if resources become even scarcer, all predators converge again upon the few prey resources still available, thus increasing overlap – out of necessity.  相似文献   

19.
A negative feedback of vegetation cover on subsequent annual precipitation is simulated for the mid‐Holocene over North Africa using a fully coupled general circulation model with dynamic vegetation, FOAM‐LPJ (Fast Ocean Atmosphere Model‐Lund Potsdam Jena Model). By computing a vegetation feedback parameter based on lagged auto‐covariances, the simulated impact of North African vegetation on precipitation is statistically quantified. The feedback is also dynamically assessed through initial value ensemble experiments, in which North African grass cover is initially reduced and the climatic response analyzed. The statistical and dynamical assessments of the negative vegetation feedback agree in sign and relative magnitude for FOAM‐LPJ. The negative feedback on annual precipitation largely results from a competition between bare soil evaporation and plant transpiration, with increases in the former outweighing reductions in the latter given reduced grass cover. This negative feedback weakens and eventually reverses sign over time during a transient simulation from the mid‐Holocene to present. A similar, but weaker, negative feedback is identified in Community Climate System Model Version 2 (CCSM2) over North Africa for the mid‐Holocene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号